Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38742626

RESUMEN

There is a growing interest in the search for metal-based therapeutics for protein misfolding disorders such as Alzheimer's disease (AD). A novel and largely unexplored class of metallodrugs is constituted by paddlewheel diruthenium complexes, which exhibit unusual water solubility and stability and unique coordination modes to proteins. Here, we investigate the ability of the complexes [Ru2Cl(DPhF)(O2CCH3)3]·H2O (1), [Ru2Cl(DPhF)2(O2CCH3)2]·H2O (2), and K2[Ru2(DPhF)(CO3)3]·3H2O (3) (DPhF- = N,N'-diphenylformamidinate) to interfere with the amyloid aggregation of the Aß1-42 peptide. These compounds differ in charge and steric hindrance due to the coordination of a different number of bulky ligands. The mechanisms of action of the three complexes were studied by employing a plethora of physicochemical and biophysical techniques as well as cellular assays. All these studies converge on different mechanisms of inhibition of amyloid fibrillation: complexes 1 and 2 show a clear inhibitory effect due to an exchange ligand process in the Ru2 unit aided by aromatic interactions. Complex 3 shows no inhibition of aggregation, probably due to its negative charge in solution. This study demonstrates that slight variations in the ligands surrounding the bimetallic core can modulate the amyloid aggregation inhibition and supports the use of paddlewheel diruthenium complexes as promising therapeutics for Alzheimer's disease.

2.
Mol Ther ; 32(5): 1425-1444, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38504518

RESUMEN

Pathological ocular angiogenesis has long been associated with myeloid cell activation. However, the precise cellular and molecular mechanisms governing the intricate crosstalk between the immune system and vascular changes during ocular neovascularization formation remain elusive. In this study, we demonstrated that the absence of the suppressor of cytokine signaling 3 (SOCS3) in myeloid cells led to a substantial accumulation of microglia and macrophage subsets during the neovascularization process. Our single-cell RNA sequencing data analysis revealed a remarkable increase in the expression of the secreted phosphoprotein 1 (Spp1) gene within these microglia and macrophages, identifying subsets of Spp1-expressing microglia and macrophages during neovascularization formation in angiogenesis mouse models. Notably, the number of Spp1-expressing microglia and macrophages exhibited further elevation during neovascularization in mice lacking myeloid SOCS3. Moreover, our investigation unveiled the Spp1 gene as a direct transcriptional target gene of signal transducer and activator of transcription 3. Importantly, pharmaceutical activation of SOCS3 or blocking of SPP1 resulted in a significant reduction in pathological neovascularization. In conclusion, our study highlights the pivotal role of the SOCS3/STAT3/SPP1 axis in the regulation of pathological retinal angiogenesis.


Asunto(s)
Modelos Animales de Enfermedad , Macrófagos , Microglía , Osteopontina , Neovascularización Retiniana , Factor de Transcripción STAT3 , Proteína 3 Supresora de la Señalización de Citocinas , Animales , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/genética , Macrófagos/metabolismo , Ratones , Microglía/metabolismo , Neovascularización Retiniana/metabolismo , Neovascularización Retiniana/patología , Neovascularización Retiniana/genética , Neovascularización Retiniana/etiología , Osteopontina/metabolismo , Osteopontina/genética , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Regulación de la Expresión Génica , Transducción de Señal , Ratones Noqueados , Neovascularización Patológica/metabolismo , Neovascularización Patológica/genética , Angiogénesis
3.
Inorg Chem ; 63(1): 564-575, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38117944

RESUMEN

The physical and chemical properties of paddlewheel diruthenium compounds are highly dependent on the nature of the ligands surrounding the bimetallic core. Herein, we compare the ability of two diruthenium compounds, [Ru2Cl(D-p-FPhF)(O2CCH3)3]·H2O (1) (D-p-FPhF- = N,N'-bis(4-fluorophenyl)formamidinate) and K3[Ru2(O2CO)4]·3H2O (2), to act as inhibitors of amyloid aggregation of the Aß1-42 peptide and its peculiar fragments, Aß1-16 and Aß21-40. A wide range of biophysical techniques has been used to determine the inhibition capacity against aggregation and the possible mechanism of action of these compounds (Thioflavin T fluorescence and autofluorescence assays, UV-vis absorption spectroscopy, circular dichroism, nuclear magnetic resonance, mass spectrometry, and electron scanning microscopy). Data show that the most effective inhibitory effect is shown for compound 1. This compound inhibits fiber formation and completely abolishes the cytotoxicity of Aß1-42. The antiaggregatory capacity of this complex can be explained by a binding mechanism of the dimetallic units to the peptide chain along with π-π interactions between the formamidinate ligand and the aromatic side chains. The results suggest the potential use of paddlewheel diruthenium complexes as neurodrugs and confirm the importance of the steric and charge effects on the properties of diruthenium compounds.


Asunto(s)
Péptidos beta-Amiloides , Fragmentos de Péptidos , Fragmentos de Péptidos/química , Péptidos beta-Amiloides/química , Dicroismo Circular
4.
Dalton Trans ; 52(36): 12677-12685, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37655459

RESUMEN

Platinum (Pt)(II) square planar complexes are well-known anticancer drugs whose Mechanism of Action (MOA) are finely tuned by the polar, hydrophobic and aromatic features of the ligands. In the attempt to translate this tunability to the identification of potential neurodrugs, herein, four Pt(II) complexes were investigated in their ability to modulate the self-aggregation processes of two amyloidogenic models: Sup35p7-13 and NPM1264-277 peptides. In particular, phenanthriplatin revealed the most efficient agent in the modulation of amyloid aggregation: through several biophysical assays, as Thioflavin T (ThT), electrospray ionization mass spectrometry (ESI-MS) and ultraviolet-visible (UV-vis) absorption spectroscopy, this complex revealed able to markedly suppress aggregation and to disassemble small soluble aggregates. This effect was due to a direct coordination of phenanthriplatin to the amyloid, with the loss of several ligands and different stoichiometries, by the formation of π-π and π-cation interactions as indicated from molecular dynamic simulations. Presented data support a growing and recent approach concerning the repurposing of metallodrugs as potential novel neurotherapeutics.


Asunto(s)
Proteínas Amiloidogénicas , Platino (Metal) , Platino (Metal)/farmacología , Ligandos , Compuestos Organoplatinos/farmacología
5.
Pharmaceutics ; 15(7)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37514183

RESUMEN

Metals are indispensable for the life of all organisms, and their dysregulation leads to various disorders due to the disruption of their homeostasis. Nowadays, various transition metals are used in pharmaceutical products as diagnostic and therapeutic agents because their electronic structure allows them to adjust the properties of molecules differently from organic molecules. Therefore, interest in the study of metal-drug complexes from different aspects has been aroused, and numerous approaches have been developed to characterize, activate, deliver, and clarify molecular mechanisms. The integration of these different approaches, ranging from chemoproteomics to nanoparticle systems and various activation strategies, enables the understanding of the cellular responses to metal drugs, which may form the basis for the development of new drugs and/or the modification of currently used drugs. The purpose of this review is to briefly summarize the recent advances in this field by describing the technological platforms and their potential applications for identifying protein targets for discovering the mechanisms of action of metallodrugs and improving their efficiency during delivery.

6.
Dalton Trans ; 52(25): 8549-8557, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37264643

RESUMEN

Neurodegenerative diseases are often characterized by the formation of aggregates of amyloidogenic peptides and proteins, facilitating the formation of neurofibrillary plaques. In this study, we investigate a series of Ru-complexes sharing three-legged piano-stool structures based on the arene ring and glucosylated carbene ligands. The ability of these complexes to bind amyloid His-peptides was evaluated by ESI-MS, and their effects on the aggregation process were investigated through ThT and Tyr fluorescence emission. The complexes were demonstrated to bind the amyloidogenic peptides even with different mechanisms and kinetics depending on the chemical nature of the ligands around the Ru(II) ion. TEM analysis detected the disaggregation of typical fibers caused by the presence of Ru-compounds. Overall, our results show that the Ru-complexes can modulate the aggregation of His-amyloids and can be conceived as good lead compounds in the field of novel anti-aggregating agents in neurodegeneration.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Rutenio , Estructura Molecular , Antineoplásicos/química , Rutenio/farmacología , Rutenio/química , Histidina , Ligandos , Péptidos , Proteínas Amiloidogénicas , Complejos de Coordinación/química
7.
Inorg Chem ; 62(26): 10470-10480, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37338927

RESUMEN

Neurodegenerative diseases are often associated with an uncontrolled amyloid aggregation. Hence, many studies are oriented to discover new compounds that are able to modulate self-recognition mechanisms of proteins involved in the development of these pathologies. Herein, three metal-complexes able to release carbon monoxide (CORMs) were analyzed for their ability to affect the self-aggregation of the amyloidogenic fragment of nucleophosmin 1, corresponding to the second helix of the three-helix bundle located in the C-terminal domain of the protein, i.e., NPM1264-277, peptide. These complexes were two cymantrenes coordinated to the nucleobase adenine (Cym-Ade) and to the antibiotic ciprofloxacin (Cym-Cipro) and a Re(I)-compound containing 1,10-phenanthroline and 3-CCCH2NHCOCH2CH2-6-bromo-chromone as ligands (Re-Flavo). Thioflavin T (ThT) assay, UV-vis absorption and fluorescence spectroscopies, scanning electron microscopy (SEM), and electrospray ionization mass spectrometry (ESI-MS) indicated that the three compounds have different effects on the peptide aggregation. Cym-Ade and Cym-Cipro act as aggregating agents. Cym-Ade induces the formation of NPM1264-277 fibers longer and stiffer than that formed by NPM1264-277 alone; irradiation of complexes speeds the formation of fibers that are more flexible and thicker than those found without irradiation. Cym-Cipro induces the formation of longer fibers, although slightly thinner in diameter. Conversely, Re-Flavo acts as an antiaggregating agent. Overall, these results indicate that metal-based CORMs with diverse structural features can have a different effect on the formation of amyloid fibers. A proper choice of ligands attached to metal can allow the development of metal-based drugs with potential application as antiamyloidogenic agents.


Asunto(s)
Complejos de Coordinación , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Ligandos , Metales , Péptidos , Proteínas Nucleares , Ciprofloxacina , Amiloide , Péptidos beta-Amiloides
8.
J Pept Sci ; 29(8): e3474, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36579727

RESUMEN

Self-assembling hydrogels are receiving great attention for both biomedical and technological applications. Self-assembly of protein/peptides as well as organic molecules is commonly induced in response to external triggers such as changes of temperature, concentration, or pH. An interesting strategy to modulate the morphology and mechanical properties of the gels implies the use of metal ions, where coordination bonds regulate the dynamic cross-linking in the construction of hydrogels, and coordination geometries, catalytic, and redox properties of metal ions play crucial roles. This review aims to discuss recent insights into the supramolecular assembly of hydrogels involving metal ions, with a focus on self-assembling peptides, as well as applications of metallogels in biomedical fields including tissue engineering, sensing, wound healing, and drug delivery.


Asunto(s)
Hidrogeles , Péptidos , Hidrogeles/química , Péptidos/química , Iones/química , Temperatura , Sistemas de Liberación de Medicamentos
9.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36499032

RESUMEN

In a protein, point mutations associated with diseases can alter the native structure and provide loss or alteration of functional levels, and an internal structural network defines the connectivity among domains, as well as aggregate/soluble states' equilibria. Nucleophosmin (NPM)1 is an abundant nucleolar protein, which becomes mutated in acute myeloid leukemia (AML) patients. NPM1-dependent leukemogenesis, which leads to its aggregation in the cytoplasm (NPMc+), is still obscure, but the investigations have outlined a direct link between AML mutations and amyloid aggregation. Protein aggregation can be due to the cooperation among several hot spots located within the aggregation-prone regions (APR), often predictable with bioinformatic tools. In the present study, we investigated potential APRs in the entire NPM1 not yet investigated. On the basis of bioinformatic predictions and experimental structures, we designed several protein fragments and analyzed them through typical aggrsegation experiments, such as Thioflavin T (ThT), fluorescence and scanning electron microscopy (SEM) experiments, carried out at different times; in addition, their biocompatibility in SHSY5 cells was also evaluated. The presented data clearly demonstrate the existence of hot spots of aggregation located in different regions, mostly in the N-terminal domain (NTD) of the entire NPM1 protein, and provide a more comprehensive view of the molecular details potentially at the basis of NPMc+-dependent AML.


Asunto(s)
Leucemia Mieloide Aguda , Nucleofosmina , Humanos , Amiloide/metabolismo , Proteínas Amiloidogénicas/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mutación , Proteínas Nucleares/metabolismo , Nucleofosmina/genética
10.
Int J Mol Sci ; 23(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36499249

RESUMEN

In this paper, we study the biological properties of two TBA analogs containing one and two extra G-tetrads, namely TBAG3 and TBAG4, respectively, and two further derivatives in which one of the small loops at the bottom (TBAG41S) or the large loop at the top (TBAG4GS) of the TBAG4 structure has been completely modified by replacing all loop residues with abasic site mimics. The therapeutical development of the TBA was hindered by its low thermodynamic and nuclease stability, while its potential as an anticancer/antiproliferative molecule is also affected by the anticoagulant activity, being a side effect in this case. In order to obtain suitable TBA analogs and to explore the involvement of specific aptamer regions in biological activity, the antiproliferative capability against DU 145 and MDAMB 231 cancer cell lines (MTT), the anticoagulant properties (PT), the biological degradability (nuclease stability assay) and nucleolin (NCL) binding ability (SPR) of the above described TBA derivatives have been tested. Interestingly, none of the TBA analogs exhibits an anticoagulant activity, while all of them show antiproliferative properties to the same extent. Furthermore, TBAG4 displays extraordinary nuclease stability and promising antiproliferative properties against breast cancer cells binding NCL efficiently. These results expand the range of G4-structures targeting NCL and the possibility of developing novel anticancer and antiviral drugs.


Asunto(s)
Aptámeros de Nucleótidos , G-Cuádruplex , Neoplasias , Humanos , Aptámeros de Nucleótidos/química , Anticoagulantes/química , Trombina/metabolismo
11.
Soft Matter ; 18(44): 8418-8426, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36300826

RESUMEN

Supramolecular assemblies of short peptides are experiencing a stimulating flowering. Herein, we report a novel class of bioinspired pentapeptides, not bearing Phe, that form hydrogels with fibrillar structures. The inherent sequence comes from the fragment 269-273 of nucleophosmin 1 protein, that is normally involved in liquid-liquid phase separation processes into the nucleolus. By means of rheology, spectroscopy, and scanning microscopy the crucial roles of the extremities in the modulation of the mechanical properties of hydrogels were elucidated. Three of four peptide showed a typical shear-thinning profile and a self-assembly into hierarchical nanostructures fibers and two of them resulted biocompatible in MCF7 cells. The presence of an amide group at C-terminal extremity caused the fastest aggregation and the major content of structured intermediates during gelling process. The tunable mechanical and structural features of this class of hydrogels render derived supramolecular systems versatile and suitable for future biomedical applications.


Asunto(s)
Nanoestructuras , Péptidos , Péptidos/química , Hidrogeles/química , Nanoestructuras/química , Reología , Proteínas
12.
Eur J Med Chem ; 243: 114781, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36152385

RESUMEN

Suppressors of cytokine signaling 1 (SOCS1) protein, a negative regulator of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway, possesses a small kinase inhibitory region (KIR) involved in the inhibition of JAK kinases. Several studies showed that mimetics of KIR-SOCS1 can be potent therapeutics in several disorders (e.g., neurological, autoimmune or cardiovascular diseases). In this work, starting from a recently identified cyclic peptidomimetic of KIR-SOCS1, icPS5(Nal1), to optimize the peptide structure and improve its biological activity, we designed novel derivatives, containing crucial amino acids substitutions and/or modifications affecting the ring size. By combining microscale thermophoresis (MST), Circular Dichroism (CD), Nuclear Magnetic Resonance (NMR) and computational studies, we showed that the cycle size plays a key role in the interaction with JAK2 and the substitution of native residues with un-natural building blocks is a valid tool to maintain low-micromolar affinity toward JAK2, greatly increasing their serum stability. These findings contribute to increase the structural knowledge required for the recognition of SOCS1/JAK2 and to progress towards their conversion into more drug-like compounds.


Asunto(s)
Quinasas Janus , Proteínas Supresoras de la Señalización de Citocinas , Proteína 1 Supresora de la Señalización de Citocinas/genética , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/química , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Quinasas Janus/metabolismo , Transducción de Señal , Citocinas/metabolismo
13.
Bioorg Chem ; 127: 106001, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35803020

RESUMEN

The "Acute Myeloid Leukemia with gene mutations'' group includes mutations in Nucleophosmin 1(NPM1) that is an abundant multifunctional protein with chaperon functions. This protein also takes part to rRNA maturation in ribosome biogenesis, tumor suppression and nucleolar stress response. Mutations of NPM1 associated to AML present in its C-terminal domain (CTD) unable its correct folding and confer it an aberrant cytoplasmatic localization (NPMc+). AML cells with NPM1 mutations retain a certain amount of wt NPM1 in the nucleolus and since NPM1 acts as a hub protein, the nucleolus of AML cells are more vulnerable with respect to cells expressing only wt NPM1. Thus, interfering with the levels or the oligomerization status of NPM1 may influence its capability to properly build up the nucleolus in AML cells. Our biophysical recent results demonstrated that AML-CTDs contain regions prone to amyloid aggregation and, herein, we present results oriented to exploit this amylodogenesis in a potential therapeutic way. We evaluated the different ability of two small molecules to enhance amyloid aggregation through complementary biophysical approaches as fluorescence and Circular Dichroism spectroscopies, Scanning Electron Microscopy and cell-viability assays, to evaluate the cytoxicity of these molecules in AML cells lines. These findings could pave the way into molecular mechanisms of NPM1c and in novel therapeutic routes toward AML progression.


Asunto(s)
Leucemia Mieloide Aguda , Nucleofosmina , Amiloide , Proteínas Amiloidogénicas , Humanos , Leucemia Mieloide Aguda/metabolismo , Mutación , Proteínas Nucleares/genética
14.
Biochim Biophys Acta Gen Subj ; 1866(8): 130173, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35597503

RESUMEN

BACKGROUND: Nucleophosmin 1 (NPM1) protein is a multifunctional nucleolar chaperone and its gene is the most frequently mutated in Acute Myeloid Leukemia (AML). AML mutations cause the unfolding of the C-terminal domain (CTD) and the protein delocalizing in the cytosol (NPM1c+). Marked aggregation endowed with an amyloid character was assessed as consequences of mutations. SCOPE: Herein we analyzed the effects of type C mutation on two protein regions: i) a N-terminal extended version of the CTD, named Cterm_mutC and ii) a shorter polypeptide including the sequences of the second and third helices of the CTD, named H2_mutC. MAJOR CONCLUSIONS: Both demonstrated able to self-assembly with different kinetics and conformational intermediates and to provide fibers presenting large flexible regions. GENERAL SIGNIFICANCE: The present study adds a new piece of knowledge to the effects of AML-mutations on structural biology of Nucleophosmin 1, that could be exploited in therapeutic interventions targeting selectively NPMc+.


Asunto(s)
Leucemia Mieloide Aguda , Nucleofosmina , Proteínas Amiloidogénicas/metabolismo , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mutación , Proteínas Nucleares/genética , Nucleofosmina/genética , Nucleofosmina/metabolismo
15.
Pharmaceuticals (Basel) ; 15(4)2022 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35455455

RESUMEN

SOCS3 (suppressor of cytokine signaling 3) protein suppresses cytokine-induced inflammation and its deletion in neurons or immune cells increases the pathological growth of blood vessels. Recently, we designed several SOCS3 peptidomimetics by assuming as template structures the interfacing regions of the ternary complex constituted by SOCS3, JAK2 (Janus Kinase 2) and gp130 (glycoprotein 130) proteins. A chimeric peptide named KIRCONG chim, including non-contiguous regions demonstrated able to bind to JAK2 and anti-inflammatory and antioxidant properties in VSMCs (vascular smooth muscle cells). With the aim to improve drug-like features of KIRCONG, herein we reported novel cyclic analogues bearing different linkages. In detail, in two of them hydrocarbon cycles of different lengths were inserted at positions i/i+5 and i/i+7 to improve helical conformations of mimetics. Structural features of cyclic compounds were investigated by CD (Circular Dichroism) and NMR (Nuclear Magnetic Resonance) spectroscopies while their ability to bind to catalytic domain of JAK2 was assessed through MST (MicroScale Thermophoresis) assay as well as their stability in biological serum. Overall data indicate a crucial role exerted by the length and the position of the cycle within the chimeric structure and could pave the way to the miniaturization of SOCS3 protein for therapeutic aims.

16.
Pharmaceutics ; 14(4)2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35456704

RESUMEN

The study of novel drug delivery systems represents one of the frontiers of the biomedical research area. Multi-disciplinary scientific approaches combining traditional or engineered technologies are used to provide major advances in improving drug bioavailability, rate of release, cell/tissue specificity and therapeutic index. Biodegradable and bio-absorbable polymers are usually the building blocks of these systems, and their copolymers are employed to create delivery components. For example, poly (lactic acid) or poly (glycolic acid) are often used as bricks for the production drug-based delivery systems as polymeric microparticles (MPs) or micron-scale needles. To avoid time-consuming empirical approaches for the optimization of these formulations, in silico-supported models have been developed. These methods can predict and tune the release of different drugs starting from designed combinations. Starting from these considerations, this review has the aim of investigating recent approaches to the production of polymeric carriers and the combination of in silico and experimental methods as promising platforms in the biomedical field.

17.
Bioorg Chem ; 122: 105680, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35248981

RESUMEN

The lipid phosphatase Ship2 binds the EphA2 receptor through a heterotypic Sam-Sam (Sterile alpha motif) interaction. Inhibitors of the Ship2-Sam/EphA2-Sam complex hold a certain potential as novel anticancer agents. The previously reported "KRI3" peptide binds Ship2-Sam working as a weak antagonist of the EphA2-Sam/Ship2-Sam interaction. Herein, the design and functional evaluation of KRI3 analogues, both linear and cyclic, are described. A multidisciplinary study was conducted through computational docking techniques, and conformational analyses by CD and NMR spectroscopies. The ability of new peptides to bind Ship2-Sam was analysed by NMR, MST and SPR assays. Studies on linear KRI3 analogues pointed out that aromatic interactions through tyrosines are important for the association with Ship2-Sam whereas, an increase of the net positive charge of the sequence or peptide cyclization through a disulfide bridge can favour unspecific interactions without a substantial improvement of the binding affinity to Ship2-Sam. Interestingly, preliminary cell-based assays demonstrated KRI3 cellular uptake even without the conjugation to a cell penetrating sequence with a main cytosolic localization. This work highlights important features of the KRI3 peptide that can be further exploited to design analogues able to hamper Sam-Sam interactions driven by electrostatic contacts.


Asunto(s)
Receptor EphA2 , Motivo alfa Estéril , Ligandos , Espectroscopía de Resonancia Magnética , Péptidos/química , Receptor EphA2/química
18.
Inorg Chem ; 61(8): 3540-3552, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35171608

RESUMEN

Neurodegenerative diseases are often caused by uncontrolled amyloid aggregation. Hence, many drug discovery processes are oriented to evaluate new compounds that are able to modulate self-recognition mechanisms. Herein, two related glycoconjugate pentacoordinate Pt(II) complexes were analyzed in their capacity to affect the self-aggregation processes of two amyloidogenic fragments, Aß21-40 and Aß25-35, of the C-terminal region of the ß-amyloid (Aß) peptide, the major component of Alzheimer's disease (AD) neuronal plaques. The most water-soluble complex, 1Ptdep, is able to bind both fragments and to deeply influence the morphology of peptide aggregates. Thioflavin T (ThT) binding assays, electrospray ionization mass spectrometry (ESI-MS), and ultraviolet-visible (UV-vis) absorption spectroscopy indicated that 1Ptdep shows different kinetics and mechanisms of inhibition toward the two sequences and demonstrated that the peptide aggregation inhibition is associated with a direct coordinative bond of the compound metal center to the peptides. These data support the in vitro ability of pentacoordinate Pt(II) complexes to inhibit the formation of amyloid aggregates and pave the way for the application of this class of compounds as potential neurotherapeutics.


Asunto(s)
Péptidos beta-Amiloides
19.
Int J Mol Sci ; 22(23)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34884467

RESUMEN

Self-assembling peptides could be considered a novel class of agents able to harvest an array of micro/nanostructures that are highly attractive in the biomedical field. By modifying their amino acid composition, it is possible to mime several biological functions; when assembled in micro/nanostructures, they can be used for a variety of purposes such as tissue regeneration and engineering or drug delivery to improve drug release and/or stability and to reduce side effects. Other significant advantages of self-assembled peptides involve their biocompatibility and their ability to efficiently target molecular recognition sites. Due to their intrinsic characteristics, self-assembled peptide micro/nanostructures are capable to load both hydrophobic and hydrophilic drugs, and they are suitable to achieve a triggered drug delivery at disease sites by inserting in their structure's stimuli-responsive moieties. The focus of this review was to summarize the most recent and significant studies on self-assembled peptides with an emphasis on their application in the biomedical field.


Asunto(s)
Péptidos/síntesis química , Sistemas de Liberación de Medicamentos , Hidrogeles , Interacciones Hidrofóbicas e Hidrofílicas , Nanoestructuras , Péptidos/química
20.
Phys Chem Chem Phys ; 23(40): 23158-23172, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34617942

RESUMEN

Herein, we compared the ability of linear and cyclic peptides generated in silico to target different protein sites: internal pockets and solvent-exposed sites. We selected human lysozyme (HuL) as a model target protein combined with the computational evolution of linear and cyclic peptides. The sequence evolution of these peptides was based on the PARCE algorithm. The generated peptides were screened based on their aqueous solubility and HuL binding affinity. The latter was evaluated by means of scoring functions and atomistic molecular dynamics (MD) trajectories in water, which allowed prediction of the structural features of the protein-peptide complexes. The computational results demonstrated that cyclic peptides constitute the optimal choice for solvent exposed sites, while both linear and cyclic peptides are capable of targeting the HuL pocket effectively. The most promising binders found in silico were investigated experimentally by surface plasmon resonance (SPR), nuclear magnetic resonance (NMR), and electrospray ionization mass spectrometry (ESI-MS) techniques. All tested peptides displayed dissociation constants in the micromolar range, as assessed by SPR; however, both NMR and ESI-MS suggested multiple binding modes, at least for the pocket binding peptides. A detailed NMR analysis confirmed that both linear and cyclic pocket peptides correctly target the binding site they were designed for.


Asunto(s)
Ligandos , Simulación de Dinámica Molecular , Muramidasa/química , Péptidos/química , Algoritmos , Secuencia de Aminoácidos , Sitios de Unión , Muramidasa/metabolismo , Resonancia Magnética Nuclear Biomolecular , Péptidos/metabolismo , Péptidos Cíclicos/química , Péptidos Cíclicos/metabolismo , Unión Proteica , Espectrometría de Masa por Ionización de Electrospray , Resonancia por Plasmón de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...