Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 5493, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37758727

RESUMEN

Social isolation negatively affects health, induces detrimental behaviors, and shortens lifespan in social species. Little is known about the mechanisms underpinning these effects because model species are typically short-lived and non-social. Using colonies of the carpenter ant Camponotus fellah, we show that social isolation induces hyperactivity, alters space-use, and reduces lifespan via changes in the expression of genes with key roles in oxidation-reduction and an associated accumulation of reactive oxygen species. These physiological effects are localized to the fat body and oenocytes, which perform liver-like functions in insects. We use pharmacological manipulations to demonstrate that the oxidation-reduction pathway causally underpins the detrimental effects of social isolation on behavior and lifespan. These findings have important implications for our understanding of how social isolation affects behavior and lifespan in general.


Asunto(s)
Hormigas , Animales , Longevidad , Estrés Oxidativo , Aislamiento Social , Hígado
2.
PLoS Biol ; 21(7): e3002203, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37486940

RESUMEN

The physiology and behavior of social organisms correlate with their social environments. However, because social environments are typically confounded by age and physical environments (i.e., spatial location and associated abiotic factors), these correlations are usually difficult to interpret. For example, associations between an individual's social environment and its gene expression patterns may result from both factors being driven by age or behavior. Simultaneous measurement of pertinent variables and quantification of the correlations between these variables can indicate whether relationships are direct (and possibly causal) or indirect. Here, we combine demographic and automated behavioral tracking with a multiomic approach to dissect the correlation structure among the social and physical environment, age, behavior, brain gene expression, and microbiota composition in the carpenter ant Camponotus fellah. Variations in physiology and behavior were most strongly correlated with the social environment. Moreover, seemingly strong correlations between brain gene expression and microbiota composition, physical environment, age, and behavior became weak when controlling for the social environment. Consistent with this, a machine learning analysis revealed that from brain gene expression data, an individual's social environment can be more accurately predicted than any other behavioral metric. These results indicate that social environment is a key regulator of behavior and physiology.


Asunto(s)
Hormigas , Microbiota , Animales , Hormigas/genética , Conducta Social , Microbiota/genética , Encéfalo , Expresión Génica/genética , Red Social
3.
Mol Ecol ; 31(21): 5602-5607, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36070191

RESUMEN

Genes not only control traits of their carrier organism (known as direct genetic effects or DGEs) but also shape their carrier's physical environment and the phenotypes of their carrier's social partners (known as indirect genetic effects or IGEs). Theoretical research has shown that the effects that genes exert on social partners can have profound consequences, potentially altering heritability and the direction of trait evolution. Complementary empirical research has shown that in various contexts (particularly in animal agriculture) IGEs can explain a large proportion of variation in specific traits. However, little is known about the general prevalence of IGEs. We conducted a reciprocal cross-fostering experiment with two genetic lineages of the clonal raider ant Ooceraea biroi to quantify the relative contribution of DGEs and IGEs to variation in brain gene expression (which underlies behavioural variation). We found that thousands of genes are differentially expressed by DGEs but not a single gene is differentially expressed by IGEs. This is surprising given the highly social context of ant colonies and given that individual behaviour varies according to the genotypic composition of the social environment in O. biroi. Overall, these findings indicate that we have a lot to learn about how the magnitude of IGEs varies across species and contexts.


Asunto(s)
Hormigas , Animales , Hormigas/genética , Fenotipo , Encéfalo , Medio Social , Expresión Génica/genética , Conducta Social
4.
Curr Biol ; 32(13): 2942-2947.e4, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35623348

RESUMEN

The evolution of eusociality has allowed ants to become one of the most conspicuous and ecologically dominant groups of organisms in the world. A large majority of the current ∼14,000 ant species belong to the formicoids,1 a clade of nine subfamilies that exhibit the most extreme forms of reproductive division of labor, large colony size,2 worker polymorphism,3 and extended queen longevity.4 The eight remaining non-formicoid subfamilies are less well studied, with few genomes having been sequenced so far and unclear phylogenetic relationships.5 By sequencing 65 genomes, we provide a robust phylogeny of the 17 ant subfamilies, retrieving high support to the controversial leptanillomorph clade (Leptanillinae and Martialinae) as the sister group to all other extant ants. Moreover, our genomic analyses revealed that the emergence of the formicoids was accompanied by an elevated number of positive selection events. Importantly, the top three gene functions under selection are linked to key features of complex eusociality, with histone acetylation being implicated in caste differentiation, gene silencing by RNA in worker sterility, and autophagy in longevity. These results show that the key pathways associated with eusociality have been under strong selection during the Cretaceous, suggesting that the molecular foundations of complex eusociality may have evolved rapidly in less than 20 Ma.


Asunto(s)
Hormigas , Animales , Hormigas/genética , Filogenia , Reproducción/genética , Selección Genética , Conducta Social
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...