Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 50(20): 11916-11923, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36263816

RESUMEN

The transition of the 90S to the pre-40S pre-ribosome is a decisive step in eukaryotic small subunit biogenesis leading to a first pre-40S intermediate (state Dis-C or primordial pre-40S), where the U3 snoRNA keeps the nascent 18S rRNA locally immature. We in vitro reconstitute the ATP-dependent U3 release from this particle, catalyzed by the helicase Dhr1, and follow this process by cryo-EM revealing two successive pre-40S intermediates, Dis-D and Dis-E. The latter has lost not only U3 but all residual 90S factors including the GTPase Bms1. In vitro remodeling likewise induced the formation of the central pseudoknot, a universally conserved tertiary RNA structure that comprises the core of the small subunit decoding center. Thus, we could structurally reveal a key tertiary RNA folding step that is essential to form the active 40S subunit.


Asunto(s)
Precursores del ARN , ARN Ribosómico 18S , ARN Nucleolar Pequeño , Subunidades Ribosómicas Pequeñas de Eucariotas , Precursores del ARN/genética , ARN Ribosómico 18S/genética , ARN Nucleolar Pequeño/genética , Saccharomyces cerevisiae/genética , Conformación de Ácido Nucleico , Subunidades Ribosómicas Pequeñas de Eucariotas/genética
2.
Mol Cell ; 81(2): 293-303.e4, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33326748

RESUMEN

Ribosome assembly is catalyzed by numerous trans-acting factors and coupled with irreversible pre-rRNA processing, driving the pathway toward mature ribosomal subunits. One decisive step early in this progression is removal of the 5' external transcribed spacer (5'-ETS), an RNA extension at the 18S rRNA that is integrated into the huge 90S pre-ribosome structure. Upon endo-nucleolytic cleavage at an internal site, A1, the 5'-ETS is separated from the 18S rRNA and degraded. Here we present biochemical and cryo-electron microscopy analyses that depict the RNA exosome, a major 3'-5' exoribonuclease complex, in a super-complex with the 90S pre-ribosome. The exosome is docked to the 90S through its co-factor Mtr4 helicase, a processive RNA duplex-dismantling helicase, which strategically positions the exosome at the base of 5'-ETS helices H9-H9', which are dislodged in our 90S-exosome structures. These findings suggest a direct role of the exosome in structural remodeling of the 90S pre-ribosome to drive eukaryotic ribosome synthesis.


Asunto(s)
ARN Helicasas DEAD-box/química , Endorribonucleasas/química , Exonucleasas/química , Complejo Multienzimático de Ribonucleasas del Exosoma/ultraestructura , ARN Ribosómico 18S/química , Ribosomas/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Sitios de Unión , Microscopía por Crioelectrón , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Exonucleasas/genética , Exonucleasas/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Modelos Moleculares , Unión Proteica , Biosíntesis de Proteínas , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Estabilidad del ARN , ARN Ribosómico 18S/genética , ARN Ribosómico 18S/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Science ; 369(6510): 1470-1476, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32943521

RESUMEN

Production of small ribosomal subunits initially requires the formation of a 90S precursor followed by an enigmatic process of restructuring into the primordial pre-40S subunit. We elucidate this process by biochemical and cryo-electron microscopy analysis of intermediates along this pathway in yeast. First, the remodeling RNA helicase Dhr1 engages the 90S pre-ribosome, followed by Utp24 endonuclease-driven RNA cleavage at site A1, thereby separating the 5'-external transcribed spacer (ETS) from 18S ribosomal RNA. Next, the 5'-ETS and 90S assembly factors become dislodged, but this occurs sequentially, not en bloc. Eventually, the primordial pre-40S emerges, still retaining some 90S factors including Dhr1, now ready to unwind the final small nucleolar U3-18S RNA hybrid. Our data shed light on the elusive 90S to pre-40S transition and clarify the principles of assembly and remodeling of large ribonucleoproteins.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Proteínas Nucleares/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Microscopía por Crioelectrón , ARN Helicasas DEAD-box/química , Proteínas Nucleares/química , Conformación Proteica , División del ARN , ARN Ribosómico 18S/química , ARN Ribosómico 18S/metabolismo , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Proteínas de Saccharomyces cerevisiae/química
4.
Stem Cells ; 35(9): 2050-2059, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28631381

RESUMEN

Human pluripotent stem cells (hPSC) require signaling provided by fibroblast growth factor (FGF) receptors. This can be initiated by the recombinant FGF2 ligand supplied exogenously, but hPSC further support their niche by secretion of endogenous FGF2. In this study, we describe a role of tyrosine kinase expressed in hepatocellular carcinoma (TEC) kinase in this process. We show that TEC-mediated FGF2 secretion is essential for hPSC self-renewal, and its lack mediates specific differentiation. Following both short hairpin RNA- and small interfering RNA-mediated TEC knockdown, hPSC secretes less FGF2. This impairs hPSC proliferation that can be rescued by increasing amounts of recombinant FGF2. TEC downregulation further leads to a lower expression of the pluripotency markers, an improved priming towards neuroectodermal lineage, and a failure to develop cardiac mesoderm. Our data thus demonstrate that TEC is yet another regulator of FGF2-mediated hPSC pluripotency and differentiation. Stem Cells 2017;35:2050-2059.


Asunto(s)
Linaje de la Célula , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/enzimología , Proteínas Tirosina Quinasas/metabolismo , Biomarcadores/metabolismo , Línea Celular , Linaje de la Célula/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Humanos , Proteínas Recombinantes/farmacología
5.
J Biol Chem ; 291(34): 17787-803, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27382052

RESUMEN

Fibroblast growth factor 2 (FGF2) is a potent mitogen promoting both tumor cell survival and tumor-induced angiogenesis. It is secreted by an unconventional secretory mechanism that is based upon direct translocation across the plasma membrane. Key steps of this process are (i) phosphoinositide-dependent membrane recruitment, (ii) FGF2 oligomerization and membrane pore formation, and (iii) extracellular trapping mediated by membrane-proximal heparan sulfate proteoglycans. Efficient secretion of FGF2 is supported by Tec kinase that stimulates membrane pore formation based upon tyrosine phosphorylation of FGF2. Here, we report the biochemical characterization of the direct interaction between FGF2 and Tec kinase as well as the identification of small molecules that inhibit (i) the interaction of FGF2 with Tec, (ii) tyrosine phosphorylation of FGF2 mediated by Tec in vitro and in a cellular context, and (iii) unconventional secretion of FGF2 from cells. We further demonstrate the specificity of these inhibitors for FGF2 because tyrosine phosphorylation of a different substrate of Tec is unaffected in their presence. Building on previous evidence using RNA interference, the identified compounds corroborate the role of Tec kinase in unconventional secretion of FGF2. In addition, they are valuable lead compounds with great potential for drug development aiming at the inhibition of FGF2-dependent tumor growth and metastasis.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Multimerización de Proteína/fisiología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , Factor 2 de Crecimiento de Fibroblastos/genética , Humanos , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/química , Proteínas Tirosina Quinasas/genética , Interferencia de ARN
6.
J Biol Chem ; 290(45): 27015-27020, 2015 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26416892

RESUMEN

For a long time, protein transport into the extracellular space was believed to strictly depend on signal peptide-mediated translocation into the lumen of the endoplasmic reticulum. More recently, this view has been challenged, and the molecular mechanisms of unconventional secretory processes are beginning to emerge. Here, we focus on unconventional secretion of fibroblast growth factor 2 (FGF2), a secretory mechanism that is based upon direct protein translocation across plasma membranes. Through a combination of genome-wide RNAi screening approaches and biochemical reconstitution experiments, the basic machinery of FGF2 secretion was identified and validated. This includes the integral membrane protein ATP1A1, the phosphoinositide phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), and Tec kinase, as well as membrane-proximal heparan sulfate proteoglycans on cell surfaces. Hallmarks of unconventional secretion of FGF2 are: (i) sequential molecular interactions with the inner leaflet along with Tec kinase-dependent tyrosine phosphorylation of FGF2, (ii) PI(4,5)P2-dependent oligomerization and membrane pore formation, and (iii) extracellular trapping of FGF2 mediated by heparan sulfate proteoglycans on cell surfaces. Here, we discuss new developments regarding this process including the mechanism of FGF2 oligomerization during membrane pore formation, the functional role of ATP1A1 in FGF2 secretion, and the possibility that other proteins secreted by unconventional means make use of a similar mechanism to reach the extracellular space. Furthermore, given the prominent role of extracellular FGF2 in tumor-induced angiogenesis, we will discuss possibilities to develop highly specific inhibitors of FGF2 secretion, a novel approach that may yield lead compounds with a high potential to develop into anti-cancer drugs.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos/metabolismo , Animales , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Factor 2 de Crecimiento de Fibroblastos/química , Factor 2 de Crecimiento de Fibroblastos/genética , Aparato de Golgi/metabolismo , Heparitina Sulfato/metabolismo , Humanos , Modelos Biológicos , Fosfatidilinositol 4,5-Difosfato/metabolismo , Multimerización de Proteína , Señales de Clasificación de Proteína , Estructura Cuaternaria de Proteína , Transporte de Proteínas , Proteínas Tirosina Quinasas/metabolismo , Interferencia de ARN , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
7.
J Biol Chem ; 290(6): 3654-65, 2015 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-25533462

RESUMEN

Previous studies proposed a role for the Na/K-ATPase in unconventional secretion of fibroblast growth factor 2 (FGF2). This conclusion was based upon pharmacological inhibition of FGF2 secretion in the presence of ouabain. However, neither independent experimental evidence nor a potential mechanism was provided. Based upon an unbiased RNAi screen, we now report the identification of ATP1A1, the α1-chain of the Na/K-ATPase, as a factor required for efficient secretion of FGF2. As opposed to ATP1A1, down-regulation of the ß1- and ß3-chains (ATP1B1 and ATP1B3) of the Na/K-ATPase did not affect FGF2 secretion, suggesting that they are dispensable for this process. These findings indicate that it is not the membrane potential-generating function of the Na/K-ATPase complex but rather a so far unidentified role of potentially unassembled α1-chains that is critical for unconventional secretion of FGF2. Consistently, in the absence of ß-chains, we found a direct interaction between the cytoplasmic domain of ATP1A1 and FGF2 with submicromolar affinity. Based upon these observations, we propose that ATP1A1 is a recruitment factor for FGF2 at the inner leaflet of plasma membranes that may control phosphatidylinositol 4,5-bisphosphate-dependent membrane translocation as part of the unconventional secretory pathway of FGF2.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos/metabolismo , Vías Secretoras , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Células HeLa , Humanos , Unión Proteica , Estructura Terciaria de Proteína , ATPasa Intercambiadora de Sodio-Potasio/química , ATPasa Intercambiadora de Sodio-Potasio/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...