Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
1.
Anal Chem ; 96(18): 7281-7288, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38663032

RESUMEN

Single-cell spatial proteomic analysis holds great promise to advance our understanding of the composition, organization, interaction, and function of the various cell types in complex biological systems. However, the current multiplexed protein imaging technologies suffer from low detection sensitivity, limited multiplexing capacity, or are technically demanding. To tackle these issues, here, we report the development of a highly sensitive and multiplexed in situ protein profiling method using off-the-shelf antibodies. In this approach, the protein targets are stained with horseradish peroxidase (HRP) conjugated antibodies and cleavable fluorophores via click chemistry. Through repeated cycles of target staining, fluorescence imaging, and fluorophore cleavage, many proteins can be profiled in single cells in situ. Applying this approach, we successfully quantified 28 different proteins in human formalin-fixed paraffin-embedded (FFPE) tonsil tissue, which represents the highest multiplexing capacity among the tyramide signal amplification (TSA) methods. Based on their unique protein expression patterns and their microenvironment, ∼820,000 cells in the tissue are classified into distinct cell clusters. We also explored the cell-cell interactions between these varied cell clusters and observed that different subregions of the tissue are composed of cells from specific clusters.


Asunto(s)
Química Clic , Colorantes Fluorescentes , Tonsila Palatina , Humanos , Colorantes Fluorescentes/química , Tonsila Palatina/citología , Tonsila Palatina/química , Tonsila Palatina/metabolismo , Análisis de la Célula Individual , Proteínas/análisis , Proteínas/química , Proteínas/metabolismo , Proteómica/métodos , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Imagen Óptica , Adhesión en Parafina
2.
Microbiol Spectr ; 12(1): e0239923, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38063388

RESUMEN

IMPORTANCE: Serology reveals exposure to pathogens, as well as the state of autoimmune and other clinical conditions. It is used to evaluate individuals and their histories and as a public health tool to track epidemics. Employing a variety of formats, studies nearly always perform serology by testing response to only one or a few antigens. However, clinical outcomes of new infections also depend on which previous infections may have occurred. We developed a high-throughput serology method that evaluates responses to hundreds of antigens simultaneously. It can be used to evaluate thousands of samples at a time and provide a quantitative readout. This tool will enable doctors to monitor which pathogens an individual has been exposed to and how that changes in the future. Moreover, public health officials could track populations and look for infectious trends among large populations. Testing many potential antigens at a time may also aid in vaccine development.


Asunto(s)
Sistema Inmunológico , Serología , Humanos , Salud Pública , Serología/métodos
3.
EBioMedicine ; 99: 104897, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38096687

RESUMEN

BACKGROUND: Increasing evidence supports that antibodies can protect against active tuberculosis (TB) but knowledge of potentially protective antigens, especially in the airways, is limited. The main objective of this study was to identify antigen-specific airway and systemic immunoglobulin isotype responses associated with the outcome of controlled latent Mycobacterium tuberculosis (Mtb) infection (LTBI) versus uncontrolled infection (TB) in nonhuman primates. METHODS: In a case-control design, using non-parametric group comparisons with false discovery rate adjustments, we assessed antibodies in 57 cynomolgus macaques which, following low-dose airway Mtb infection, developed either LTBI or TB. We investigated airway and systemic IgG, IgA, and IgM responses in paired bronchoalveolar lavage and plasma samples prior to, two-, and 5-6-months post Mtb infection using an antigen-unbiased approach with Mtb glycan and proteome-wide microarrays. FINDINGS: Macaques that developed LTBI (n = 36) had significantly increased airway and plasma IgA reactivities to specific arabinomannan (AM) motifs prior to Mtb infection compared to those that developed TB (n = 21; p < 0.01, q < 0.05). Furthermore, LTBI macaques had higher plasma IgG reactivity to protein MTB32A (Rv0125) early post Mtb infection (p < 0.05) and increasing airway IgG responses to some proteins over time. INTERPRETATION: Our results support a protective role of pre-existing mucosal (lung) and systemic IgA to specific Mtb glycan motifs, suggesting that prior exposure to nontuberculous mycobacteria could be protective against TB. They further suggest that IgG to Mtb proteins early post infection could provide an additional protective mechanism. These findings could inform TB vaccine development strategies. FUNDING: NIH/NIAID AI117927, AI146329, and AI127173 to JMA.


Asunto(s)
Tuberculosis Latente , Mycobacterium tuberculosis , Tuberculosis , Animales , Formación de Anticuerpos , Antígenos Bacterianos , Inmunoglobulina G , Polisacáridos , Macaca , Primates , Inmunoglobulina A
4.
bioRxiv ; 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37961266

RESUMEN

Single-cell spatial proteomic analysis holds great promise to advance our understanding of the composition, organization, interaction and function of the various cell types in complex biological systems. However, the current multiplexed protein imaging technologies suffer from low detection sensitivity, limited multiplexing capacity or technically demanding. To tackle these issues, here we report the development of a highly sensitive and multiplexed in situ protein profiling method using off-the-shelf antibodies. In this approach, the protein targets are stained with horseradish peroxidase (HRP) conjugated antibodies and cleavable fluorophores via click chemistry. Through reiterative cycles of target staining, fluorescence imaging, and fluoropohore cleavage, many proteins can be profiled in single cells in situ. Applying this approach, we successfully quantified 28 different proteins in a human formalin-fixed paraffin-embedded (FFPE) tonsil tissue, which represents the highest multiplexing capacity among the tyramide signal amplification (TSA) methods. Based on their unique protein expression patterns and their microenvironment, ~820,000 cells in the tissue are classified into distinct cell clusters. We also explored the cell-cell interactions between these varied cell clusters and observed different subregions of the tissue are composed of cells from specific clusters.

5.
NPJ Breast Cancer ; 9(1): 78, 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37773066

RESUMEN

Mutations in the TP53 tumor suppressor gene occur in >80% of the triple-negative or basal-like breast cancer. To test whether neomorphic functions of specific TP53 missense mutations contribute to phenotypic heterogeneity, we characterized phenotypes of non-transformed MCF10A-derived cell lines expressing the ten most common missense mutant p53 proteins and observed a wide spectrum of phenotypic changes in cell survival, resistance to apoptosis and anoikis, cell migration, invasion and 3D mammosphere architecture. The p53 mutants R248W, R273C, R248Q, and Y220C are the most aggressive while G245S and Y234C are the least, which correlates with survival rates of basal-like breast cancer patients. Interestingly, a crucial amino acid difference at one position-R273C vs. R273H-has drastic changes on cellular phenotype. RNA-Seq and ChIP-Seq analyses show distinct DNA binding properties of different p53 mutants, yielding heterogeneous transcriptomics profiles, and MD simulation provided structural basis of differential DNA binding of different p53 mutants. Integrative statistical and machine-learning-based pathway analysis on gene expression profiles with phenotype vectors across the mutant cell lines identifies quantitative association of multiple pathways including the Hippo/YAP/TAZ pathway with phenotypic aggressiveness. Further, comparative analyses of large transcriptomics datasets on breast cancer cell lines and tumors suggest that dysregulation of the Hippo/YAP/TAZ pathway plays a key role in driving the cellular phenotypes towards basal-like in the presence of more aggressive p53 mutants. Overall, our study describes distinct gain-of-function impacts on protein functions, transcriptional profiles, and cellular behaviors of different p53 missense mutants, which contribute to clinical phenotypic heterogeneity of triple-negative breast tumors.

6.
J Am Coll Health ; : 1-5, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37535853

RESUMEN

Background: The COVID-19 pandemic has had important implications for college students' socioemotional and academic well-being. Sleep problems were common during this time, which may have further impacted well-being. Methods: Five hundred and fifty-two college students (Mage = 19.81; 58% female; 42% White) completed a survey in Fall 2021 reflecting on behaviors/emotions (sleep, depressive symptoms, loneliness, academic engagement) experienced during the first peak of COVID-19 and over the past month. Latent profile analysis was conducted to identify subgroups of sleepers during peak-COVID in relation to well-being during and after the initial peak. Results: Four sleep profiles were identified: Optimal (49%), High Latency/Medicated (23%), Average/Fair (16%), Low-Duration (12%). During peak-COVID, depression and loneliness were highest in High Latency/Medicated and Low-Duration subgroups; academic engagement was highest for Optimal sleepers. Following peak-COVID, academic engagement was highest for Average/Fair sleepers. Conclusions: Findings highlight heterogeneity in students' sleep patterns during the initial peak of COVID-19 and their relation to well-being during and post-peak-pandemic.

7.
BMJ Open ; 13(8): e072627, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37536960

RESUMEN

OBJECTIVE: This study investigated the seroprevalence of SARS-CoV-2 antibodies among adults over 18 years. DESIGN: Prospective cohort study. SETTINGS: A large public university. PARTICIPANTS: This study took volunteers over 5 days and recruited 1064 adult participants. PRIMARY OUTCOME MEASURES: Seroprevalence of SARS-CoV-2-specific antibodies due to previous exposure to SARS-CoV-2 and/or vaccination. RESULTS: The seroprevalence of the antireceptor binding domain (RBD) antibody was 90% by a lateral flow assay and 88% by a semiquantitative chemiluminescent immunoassay. The seroprevalence for antinucleocapsid was 20%. In addition, individuals with previous natural COVID-19 infection plus vaccination had higher anti-RBD antibody levels compared with those who had vaccination only or infection only. Individuals who had a breakthrough infection had the highest anti-RBD antibody levels. CONCLUSION: Accurate estimates of the cumulative incidence of SARS-CoV-2 infection can inform the development of university risk mitigation protocols such as encouraging booster shots, extending mask mandates or reverting to online classes. It could help us to have clear guidance to act at the first sign of the next surge as well, especially since there is a surge of COVID-19 subvariant infections.


Asunto(s)
COVID-19 , Adulto , Humanos , Estudios Transversales , Estudios Prospectivos , Estudios Seroepidemiológicos , Universidades , COVID-19/epidemiología , SARS-CoV-2 , Anticuerpos Antivirales
8.
Microbiol Spectr ; 11(4): e0469022, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37278651

RESUMEN

Patients with 2019 coronavirus disease (COVID-19) exhibit a broad spectrum of clinical presentations. A person's antimicrobial antibody profile, as partially shaped by past infection or vaccination, can reflect the immune system health that is critical to control and resolve the infection. We performed an explorative immunoproteomics study using microbial protein arrays displaying 318 full-length antigens from 77 viruses and 3 bacteria. We compared antimicrobial antibody profiles between 135 patients with mild COVID-19 disease and 215 patients with severe disease in 3 independent cohorts from Mexico and Italy. Severe disease patients were older with higher prevalence of comorbidities. We confirmed that severe disease patients elicited a stronger anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) response. We showed that antibodies against HCoV-229E and HcoV-NL63 but not against HcoV-HKU1 and HcoV-OC43 were also higher in those who had severe disease. We revealed that for a set of IgG and IgA antibodies targeting coronaviruses, herpesviruses, and other respiratory viruses, a subgroup of patients with the highest reactivity levels had a greater incidence of severe disease compared to those with mild disease across all three cohorts. On the contrary, fewer antibodies showed consistent greater prevalence in mild disease in all 3 cohorts. IMPORTANCE The clinical presentations of COVID-19 range from asymptomatic to critical illness that may lead to intensive care or even death. The health of the immune system, as partially shaped by past infections or vaccinations, is critical to control and resolve the infection. Using an innovative protein array platform, we surveyed antibodies against hundreds of full-length microbial antigens from 80 different viruses and bacteria in COVID-19 patients from different geographic regions with mild or severe disease. We not only confirmed the association of severe COVID-19 disease with higher reactivity of antibody responses to SARS-CoV-2 but also uncovered known and novel associations with antibody responses against herpesviruses and other respiratory viruses. Our study represents a significant step forward in understanding the factors contributing to COVID-19 disease severity. We also demonstrate the power of comprehensive antimicrobial antibody profiling in deciphering risk factors for severe COVID-19. We anticipate that our approach will have broad applications in infectious diseases.


Asunto(s)
COVID-19 , Coronavirus Humano 229E , Coronavirus Humano OC43 , Humanos , COVID-19/epidemiología , SARS-CoV-2 , Anticuerpos Antivirales
9.
J Proteome Res ; 22(6): 1800-1815, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37183442

RESUMEN

Understanding autoimmunity to endogenous proteins is crucial in diagnosing and treating autoimmune diseases. In this work, we developed a user-friendly AAgAtlas portal (http://biokb.ncpsb.org.cn/aagatlas_portal/index.php#), which can be used to search for 8045 non-redundant autoantigens (AAgs) and 47 post-translationally modified AAgs against 1073 human diseases that are prioritized by a credential score developed by multisource evidence. Using AAgAtlas, the immunogenic properties of human AAgs was systematically elucidated according to their genetic, biophysical, cytological, expression profile, and evolutionary characteristics. The results indicated that human AAgs are evolutionally conserved in protein sequence and enriched in three hydrophilic and polar amino acid residues (K, D, and E) that are located at the protein surface. AAgs are enriched in proteins that are involved in nucleic acid binding, transferase, and the cytoskeleton. Genome, transcriptome, and proteome analyses further indicated that AAb production is associated with gene variance and abnormal protein expression related to the pathological activities of different tumors. Collectively, our data outlines the hallmarks of human AAgs that facilitate the understanding of humoral autoimmunity and the identification of biomarkers of human diseases.


Asunto(s)
Autoantígenos , Enfermedades Autoinmunes , Humanos , Autoantígenos/genética , Autoanticuerpos , Enfermedades Autoinmunes/genética , Autoinmunidad , Secuencia de Aminoácidos
11.
Int Forum Allergy Rhinol ; 13(8): 1503-1510, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36504343

RESUMEN

BACKGROUND: The role of microbes in chronic rhinosinusitis (CRS) is poorly understood. We hypothesize that analyzing prior microbial exposures via assessing microbial protein serological reactivity in CRS versus controls may offer insights for CRS etiopathogenesis. METHODS: We profiled IgG and IgA antibodies to individual microbial proteins in serum samples of CRS patients and controls using a novel high-throughput microarray protein technology, Nucleic Acid Programmable Protein Array (NAPPA). The study was conducted on 118 subjects (39 CRS, 79 controls). A CRS-focused NAPPA array, with 1557 potentially sero-reactive microbial proteins elected from a pre-screening of 6500 genes of interest was constructed. It included membrane-associated proteins from 47 bacterial species and all proteins from 43 viral strains. Differences between CRS and controls were compared across individual antimicrobial antibodies and the species. RESULTS: Chronic rhinosinusitis patients had significantly elevated antimicrobial antibodies compared with controls. One bacterium (Staphylococcus aureus) and three viral strains (human metapneumovirus, human herpesvirus 5, and human herpesvirus 4) were identified as sources of the proteins that showed significantly elevated sero-reactivity in CRS patients. Within CRS, patients with polyps had elevated antibodies against S. aureus, influenza A virus (H1N1, H3N2), and rhinovirus B14. CRS patients without polyps showed more antibodies against human herpesvirus 1 and vaccinia virus WR. CONCLUSIONS: Compared with healthy controls, CRS patients' serum samples showed significantly increased sero-reactivity to both bacterial and viral proteins, reflecting recent or current infection or active colonization. Significantly higher antibodies against S. aureus, human metapneumovirus, human herpesvirus 5, and human herpesvirus 4 in CRS need further study.


Asunto(s)
Antiinfecciosos , Subtipo H1N1 del Virus de la Influenza A , Microbiota , Rinitis , Sinusitis , Humanos , Staphylococcus aureus , Formación de Anticuerpos , Subtipo H3N2 del Virus de la Influenza A , Enfermedad Crónica
12.
J Proteome Res ; 22(3): 657-658, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36580604
13.
J Gastroenterol ; 58(2): 112-124, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36301365

RESUMEN

BACKGROUND: Chronic Helicobacter pylori infection may induce gastric intestinal metaplasia (IM). We compared anti-H. pylori antibody profiles between IM cases and non-atrophic gastritis (NAG) controls. METHODS: We evaluated humoral responses to 1528 H. pylori proteins among a discovery set of 50 IM and 50 NAG using H. pylori protein arrays. Antibodies with ≥ 20% sensitivity at 90% specificity for either group were selected and further validated in an independent set of 100 IM and 100 NAG using odds ratios (OR). A validated multi-signature was evaluated using the area under the receiver operating characteristics curve (AUC) and net reclassification improvement (NRI). RESULTS: Sixty-two immunoglobulin (Ig) G and 11 IgA antibodies were detected in > 10%. Among them, 22 IgG and 6 IgA antibodies were different between IM and NAG in the discovery set. Validated antibodies included 11 IgG (anti-HP1177/Omp27/HopQ [OR = 8.1, p < 0.001], anti-HP0547/CagA [4.6, p < 0.001], anti-HP0596/Tipα [4.0, p = 0.002], anti-HP0103/TlpB [3.8, p = 0.001], anti-HP1125/PalA/Omp18 [3.1, p = 0.001], anti-HP0153/RecA [0.48, p = 0.03], anti-HP0385 [0.41, p = 0.006], anti-HP0243/TlpB [0.39, p = 0.016], anti-HP0371/FabE [0.37, p = 0.017], anti-HP0900/HypB/AccB [0.35, p = 0.048], and anti-HP0709 [0.30, p = 0.003]), and 2 IgA (anti-HP1125/PalA/Omp18 [2.7, p = 0.03] and anti-HP0596/Tipα [2.5, p = 0.027]). A model including all 11 IgG antibodies (AUC = 0.81) had better discriminated IM and NAG compared with an anti-CagA only (AUC = 0.77) model (NRI = 0.44; p = 0.001). CONCLUSIONS: Our study represents the most comprehensive assessment of anti-H. pylori antibody profiles in IM. The target antigens for these novel antibodies may act together with CagA in the progression to IM. Along with other biomarkers, specific H. pylori antibodies may identify IM patients, who would benefit from surveillance.


Asunto(s)
Gastritis Atrófica , Infecciones por Helicobacter , Helicobacter pylori , Lesiones Precancerosas , Neoplasias Gástricas , Humanos , Anticuerpos Antibacterianos , Inmunoglobulina G , Inmunoglobulina A , Metaplasia
14.
Methods Mol Biol ; 2597: 131-142, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36374419

RESUMEN

Protein microarrays are an important tool when analyzing multiple analytes simultaneously. As the human genome contains approximately 20,000 genes, examining the interactions of even just one representative protein for each gene requires a high-throughput technique. For instance, the interaction between glycosaminoglycans (GAGs), a form of polysaccharide, and chemokines, small chemoattractant proteins, is critical for local inflammation. GAGs present in the glycocalyx on the surface of the cell bind to chemokines, which are released in response to injury. These chemokines can then form concentration gradients that direct the migration and recruitment of leucocytes via leukocyte receptors which in turn leads to immune cell responses, inflammation, or innate immunity and cell or antibody-mediated immune responses. Discovering the novel interactions between the GAGs and chemokines can help in designing drugs which can alter cellular binding to organ tissues, thereby potentially reducing damaging innate immune (inflammation) or acquired immune (antibody-mediated) responses.


Asunto(s)
Quimiocinas , Análisis por Matrices de Proteínas , Humanos , Quimiocinas/metabolismo , Glicosaminoglicanos/metabolismo , Inflamación/metabolismo , Inmunidad Innata , Unión Proteica
15.
Cancer Epidemiol Biomarkers Prev ; 32(4): 496-504, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36066883

RESUMEN

BACKGROUND: CT screening can detect lung cancer early but suffers a high false-positive rate. There is a need for molecular biomarkers that can distinguish malignant and benign indeterminate pulmonary nodules (IPN) detected by CT scan. METHODS: We profiled antibodies against 901 individual microbial antigens from 27 bacteria and 29 viruses in sera from 127 lung adenocarcinoma (ADC), 123 smoker controls (SMC), 170 benign nodule controls (BNC) individuals using protein microarrays to identify ADC and BNC specific antimicrobial antibodies. RESULTS: Analyzing fourth quartile ORs, we found more antibodies with higher prevalence in the three BNC subgroups than in ADC or SMC. We demonstrated that significantly more anti-Helicobacter pylori antibodies showed higher prevalence in ADC relative to SMC. We performed subgroup analysis and found that more antibodies with higher prevalence in light smokers (≤20 pack-years) compared with heavy smokers (>20 pack-years), in BNC with nodule size >1 cm than in those with ≤1 cm nodules, and in stage I ADC than in stage II and III ADC. We performed multivariate analysis and constructed antibody panels that can distinguish ADC versus SMC and ADC versus BNC with area under the ROC curve (AUC) of 0.88 and 0.80, respectively. CONCLUSIONS: Antimicrobial antibodies have the potential to reduce the false positive rate of CT screening and provide interesting insight in lung cancer development. IMPACT: Microbial infection plays an important role in lung cancer development and the formation of benign pulmonary nodules.


Asunto(s)
Adenocarcinoma del Pulmón , Antiinfecciosos , Neoplasias Pulmonares , Nódulos Pulmonares Múltiples , Humanos , Formación de Anticuerpos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/patología
18.
World J Gastroenterol ; 28(30): 4089-4101, 2022 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-36157118

RESUMEN

BACKGROUND: The healthcare burden of inflammatory bowel disease (IBD) is rising globally and there are limited non-invasive biomarkers for accurate and early diagnosis. AIM: To understand the important role that intestinal microbiota play in IBD pathogenesis and identify anti-microbial antibody signatures that benefit clinical management of IBD patients. METHODS: We performed serological profiling of 100 Crohn's disease (CD) patients, 100 ulcerative colitis (UC) patients and 100 healthy controls against 1173 bacterial and 397 viral proteins from 50 bacteria and 33 viruses on protein microarrays. The study subjects were randomly divided into discovery (n = 150) and validation (n = 150) sets. Statistical analysis was performed using R packages. RESULTS: Anti-bacterial antibody responses showed greater differential prevalence among the three subject groups than anti-viral antibody responses. We identified novel antibodies against the antigens of Bacteroidetes vulgatus (BVU_0562) and Streptococcus pneumoniae (SP_1992) showing higher prevalence in CD patients relative to healthy controls. We also identified antibodies against the antigen of Streptococcus pyogenes (SPy_2009) showing higher prevalence in healthy controls relative to UC patients. Using these novel antibodies, we built biomarker panels with area under the curve (AUC) of 0.81, 0.87, and 0.82 distinguishing CD vs control, UC vs control, and CD vs UC, respectively. Subgroup analysis revealed that penetrating CD behavior, colonic CD location, CD patients with a history of surgery, and extensive UC exhibited highest antibody prevalence among all patients. We demonstrated that autoantibodies and anti-microbial antibodies in CD patients had minimal correlation. CONCLUSION: We have identified antibody signatures for CD and UC using a comprehensive analysis of anti-microbial antibody response in IBD. These antibodies and the source microorganisms of their target antigens improve our understanding of the role of specific microorganisms in IBD pathogenesis and, after future validation, should aid early and accurate diagnosis of IBD.


Asunto(s)
Colitis Ulcerosa , Enfermedad de Crohn , Enfermedades Inflamatorias del Intestino , Autoanticuerpos , Biomarcadores , Humanos , Proteínas Virales
19.
Cell Rep ; 39(9): 110873, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35649350

RESUMEN

Autoantibodies are a hallmark of both autoimmune disease and cancer, but they also occur in healthy individuals. Here, we perform a meta-analysis of nine datasets and focus on the common autoantibodies shared by healthy individuals. We report 77 common autoantibodies based on the protein microarray data obtained from probing 182 healthy individual sera on 7,653 human proteins and an additional 90 healthy individual sera on 1,666 human proteins. There is no gender bias; however, the number of autoantibodies increase with age, plateauing around adolescence. We use a bioinformatics pipeline to determine possible molecular-mimicry peptides that can contribute to the elicitation of these common autoantibodies. There is enrichment of intrinsic properties of proteins like hydrophilicity, basicity, aromaticity, and flexibility for common autoantigens. Subcellular localization and tissue-expression analysis reveal that several common autoantigens are sequestered from the circulating autoantibodies.


Asunto(s)
Autoanticuerpos , Enfermedades Autoinmunes , Adolescente , Autoantígenos , Humanos , Análisis por Matrices de Proteínas , Suero
20.
mSphere ; 7(4): e0019322, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35703544

RESUMEN

In October 2020, the National Cancer Institute (NCI) Serological Sciences Network (SeroNet) was established to study the immune response to COVID-19, and "to develop, validate, improve, and implement serological testing and associated technologies" (https://www.cancer.gov/research/key-initiatives/covid-19/coronavirus-research-initiatives/serological-sciences-network). SeroNet is comprised of 25 participating research institutions partnering with the Frederick National Laboratory for Cancer Research (FNLCR) and the SeroNet Coordinating Center. Since its inception, SeroNet has supported collaborative development and sharing of COVID-19 serological assay procedures and has set forth plans for assay harmonization. To facilitate collaboration and procedure sharing, a detailed survey was sent to collate comprehensive assay details and performance metrics on COVID-19 serological assays within SeroNet. In addition, FNLCR established a protocol to calibrate SeroNet serological assays to reference standards, such as the U.S. severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serology standard reference material and first WHO international standard (IS) for anti-SARS-CoV-2 immunoglobulin (20/136), to facilitate harmonization of assay reporting units and cross-comparison of study data. SeroNet institutions reported development of a total of 27 enzyme-linked immunosorbent assay (ELISA) methods, 13 multiplex assays, and 9 neutralization assays and use of 12 different commercial serological methods. FNLCR developed a standardized protocol for SeroNet institutions to calibrate these diverse serological assays to reference standards. In conclusion, SeroNet institutions have established a diverse array of COVID-19 serological assays to study the immune response to SARS-CoV-2 and vaccines. Calibration of SeroNet serological assays to harmonize results reporting will facilitate future pooled data analyses and study cross-comparisons. IMPORTANCE SeroNet institutions have developed or implemented 61 diverse COVID-19 serological assays and are collaboratively working to harmonize these assays using reference materials to establish standardized reporting units. This will facilitate clinical interpretation of serology results and cross-comparison of research data.


Asunto(s)
COVID-19 , Anticuerpos Antivirales , COVID-19/diagnóstico , Prueba de COVID-19 , Humanos , SARS-CoV-2 , Pruebas Serológicas/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...