Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Nat Commun ; 15(1): 4175, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755132

RESUMEN

Drug-recalcitrant infections are a leading global-health concern. Bacterial cells benefit from phenotypic variation, which can suggest effective antimicrobial strategies. However, probing phenotypic variation entails spatiotemporal analysis of individual cells that is technically challenging, and hard to integrate into drug discovery. In this work, we develop a multi-condition microfluidic platform suitable for imaging two-dimensional growth of bacterial cells during transitions between separate environmental conditions. With this platform, we implement a dynamic single-cell screening for pheno-tuning compounds, which induce a phenotypic change and decrease cell-to-cell variation, aiming to undermine the entire bacterial population and make it more vulnerable to other drugs. We apply this strategy to mycobacteria, as tuberculosis poses a major public-health threat. Our lead compound impairs Mycobacterium tuberculosis via a peculiar mode of action and enhances other anti-tubercular drugs. This work proves that harnessing phenotypic variation represents a successful approach to tackle pathogens that are increasingly difficult to treat.


Asunto(s)
Antituberculosos , Mycobacterium tuberculosis , Análisis de la Célula Individual , Tuberculosis , Mycobacterium tuberculosis/efectos de los fármacos , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Análisis de la Célula Individual/métodos , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Humanos , Pruebas de Sensibilidad Microbiana , Microfluídica/métodos , Fenotipo , Descubrimiento de Drogas/métodos , Sinergismo Farmacológico
2.
ACS Omega ; 9(11): 13217-13226, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38524450

RESUMEN

Recent advances in iterative neural network analyses (e.g., AlphaFold2 and RoseTTA fold) have been revolutionary for protein 3D structure prediction, especially for difficult-to-manipulate α-helical/ß-barrel integral membrane proteins. These model structures are calculated based on the coevolution of amino acids within the protein of interest and similarities to existing protein structures; the local effects of the membrane on folding and stability of the calculated model structures are not considered. We recently reported the discovery, 3D modeling, and characterization of 18-ß-stranded outer-membrane (OM) WzpX, WzpS, and WzpB ß-barrel secretion porins for the exopolysaccharide (EPS), major spore coat polysaccharide (MASC), and biosurfactant polysaccharide (BPS) pathways (respectively) in the Gram-negative social predatory bacterium Myxococcus xanthus DZ2. However, information was not obtained regarding the dynamic behavior of surface-gating WzpX/S/B loop domains or on potential treatments to inactivate these porins. Herein, we developed a molecular dynamics (MD) protocol to study the core stability and loop dynamism of neural network-based integral membrane protein structure models embedded in an asymmetric OM bilayer, using the M. xanthus WzpX, WzpS, and WzpB proteins as test candidates. This was accomplished through integration of the CHARMM-graphical user interface (GUI) and Molecular Operating Environment (MOE) workflows to allow for a rapid simulation system setup and facilitate data analysis. In addition to serving as a method of model structure validation, our molecular dynamics simulations revealed a minimal movement of extracellular WzpX/S/B loops in the absence of an external stimulus as well as druggable cavities between the loops. Virtual screening of a commercial fragment library against these cavities revealed putative fragment-binding hotspots on the cell-surface face of each ß-barrel, along with key interacting residues, and identified promising hits for the design of potential binders capable of plugging the ß-barrels and inhibiting polysaccharide secretion.

3.
Mini Rev Med Chem ; 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38350844

RESUMEN

The castor plant (Ricinus communis) is primarily known for its seeds, which contain a unique fatty acid called ricinoleic acid with several industrial and commercial applications. Castor seeds also contain ricin, a toxin considered a chemical and biological warfare agent. Despite years of investigation, there is still no effective antidote or vaccine available. However, some progress has been made, and the development of an effective treatment may be on the horizon. To provide an updated overview of this issue, we have conducted a comprehensive review of the literature on the current state of research in the fight against ricin. This mini-review is based on the reported research and aims to address the challenges faced by researchers, as well as highlight the most successful cases achieved thus far. Our goal is to encourage the scientific community to continue their efforts in this critical search.

4.
Microbes Infect ; : 105297, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38199267

RESUMEN

Small molecule drugs have an important role to play in combating viral infections, and biophysics support has been central for contributing to the discovery and design of direct acting antivirals. Perhaps one of the most successful biophysical tools for this purpose is NMR spectroscopy when utilized strategically and pragmatically within team workflows and timelines. This report describes some clear examples of how NMR applications contributed to the design of antivirals when combined with medicinal chemistry, biochemistry, X-ray crystallography and computational chemistry. Overall, these multidisciplinary approaches allowed teams to reveal and expose compound physical properties from which design ideas were spawned and tested to achieve the desired successes. Examples are discussed for the discovery of antivirals that target HCV, HIV and SARS-CoV-2.

5.
Bioorg Med Chem Lett ; 95: 129488, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37770003

RESUMEN

The Hippo pathway regulates organ size and tissue homeostasis by controlling cell proliferation and apoptosis. The YAP-TEAD transcription factor, the downstream effector of the Hippo pathway, regulates the expression of genes such as CTGF, Cyr61, Axl and NF2. Aberrant Hippo activity has been identified in multiple types of cancers. Flufenamic acid (FA) was reported to bind in a liphophilic TEAD palmitic acid (PA) pocket, leading to reduction of the expression of Axl and NF2. Here, we show that the replacement of the trifluoromethyl moiety in FA by aromatic groups, directly connected to the scaffold or separated by a linker, leads to compounds with better affinity to TEAD. Co-crystallization studies show that these compounds bind similarly to FA, but deeper within the PA pocket. Our studies identified LM-41 and AF-2112 as two TEAD binders that strongly reduce the expression of CTGF, Cyr61, Axl and NF2. LM-41 gave the strongest reduction of migration of human MDA-MB-231 breast cancer cells.


Asunto(s)
Ácido Flufenámico , Neoplasias , Humanos , Ácido Flufenámico/farmacología , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica , Vía de Señalización Hippo , Neoplasias/genética
6.
J Med Chem ; 66(19): 13416-13427, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37732695

RESUMEN

Establishing robust structure-activity relationships (SARs) is key to successful drug discovery campaigns, yet it often remains elusive due to screening and hit validation artifacts (false positives and false negatives), which frequently result in unproductive downstream expenditures of time and resources. To address this issue, we developed an integrative biophysics-driven strategy that expedites hit-to-lead discovery, mitigates false positives/negatives and common hit validation errors, and provides a robust approach to obtaining accurate binding and affinity measurements. The advantage of this method is that it vastly improves the clarity and reproducibility for affinity-driven SAR by monitoring and eliminating confounding factors. We demonstrate the ease at which high-quality micromolar binders can be generated from the initial millimolar fragment screening hits against an "undruggable" protein target, HRas.


Asunto(s)
Descubrimiento de Drogas , Imagen por Resonancia Magnética , Reproducibilidad de los Resultados , Espectroscopía de Resonancia Magnética , Relación Estructura-Actividad
7.
ACS Omega ; 8(29): 25832-25838, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37521620

RESUMEN

Macrocyclic peptidomimetics have been seriously contributing to our arsenal of drugs to combat diseases. The search for nature's discoveries led us to mortiamides A-D (found in a novel fungus from Northern Canada), which is a family of cyclic peptides that clearly have demonstrated impressive pharmaceutical potential. This prompted us to learn more about their solution-state properties as these are central for binding to target molecules. Here, we secured and isolated mortiamide D, and then acquired high-resolution nuclear magnetic resonance (NMR) data to learn more about its structure and dynamics attributes. Sets of two-dimensional NMR experiments provided atomic-level (through-bond and through-space) data to confirm the primary structure, and NMR-driven molecular dynamics (MD) simulations suggested that more than one predominant three-dimensional (3D) structure exist in solution. Further steps of MD simulations are consistent with the finding that the backbones of mortiamides A-C also have at least two prominent macrocyclic shapes, but the side-chain structures and dynamics differed significantly. Knowledge of these solution properties can be exploited for drug design and discovery.

8.
Artículo en Inglés | MEDLINE | ID: mdl-37479961

RESUMEN

Bolivian hemorrhagic fever (BHF) caused by Machupo virus (MACV) is a New World arenavirus having a reported mortality rate of 25-35%. The BHF starts with fever, followed by headache, and nausea which rapidly progresses to severe hemorrhagic phase within 7 days of disease onset. One of the key promoters for MACV viral entry into the cell followed by viral propagation is performed by the viral glycoprotein (GPC). GPC is post-transcriptionally cleaved into GP1, GP2 and a signal peptide. These proteins all take part in the viral infection in host body. Therefore, GPC protein is an ideal target for developing therapeutics against MACV infection. In this study, GPC protein was considered to design a multi-epitope, multivalent vaccine containing antigenic and immunogenic CTL and HTL epitopes. Different structural validations and physicochemical properties were analysed to validate the vaccine. Docking and molecular dynamics simulations were conducted to understand the interactions of the vaccine with various immune receptors. Finally, the vaccine was codon optimised in silico and along with which immune simulation studies was performed in order to evaluate the vaccine's effectiveness in triggering an efficacious immune response against MACV.

9.
Chem Biol Interact ; 382: 110622, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37442286

RESUMEN

The A-series is the most recent generation of chemical warfare nerve agents (CWA) which act directly on the inhibition of the human acetylcholinesterase (HssAChE) enzyme. These compounds lack accurate experimental data on their physicochemical properties, and there is no evidence that traditional antidotes effectively reactivate HssAChE inhibited by them. In the search for potential antidotes, we employed virtual screening, molecular docking, and molecular dynamics (MD) simulations for the theoretical assessment of the performance of a library of Mannich phenols as potential reactivators of HssAChE inhibited by the Novichok agents A-230, A-232, and A-234, in comparison with the commercial oximes pralidoxime (2-PAM), asoxime (HI-6), trimedoxime (TMB-4), and obidoxime. Following the near-attack conformation (NAC) approach, our results suggest that the compounds assessed would face difficulties in triggering the proposed nucleophilic in-line displacement mechanism. Despite this, it was observed that certain Mannich phenols presented similar or superior results to those obtained by reference oximes against A-232 and A-234 model, suggesting that these compounds can adopt more favourable conformations. Additional binding energy calculations confirmed the stability of the model/ligands complexes and the reactivating potential observed in the molecular docking and MD studies. Our findings indicate that the Mannich phenols could be alternative antidotes and that their efficacy should be evaluated experimentally against the A-series CWA.


Asunto(s)
Sustancias para la Guerra Química , Reactivadores de la Colinesterasa , Agentes Nerviosos , Humanos , Antídotos/farmacología , Reactivadores de la Colinesterasa/farmacología , Acetilcolinesterasa/metabolismo , Simulación del Acoplamiento Molecular , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Oximas/farmacología , Oximas/química , Trimedoxima/química , Trimedoxima/farmacología , Sustancias para la Guerra Química/farmacología , Compuestos de Piridinio/farmacología
10.
Mol Pharm ; 20(8): 4031-4040, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37421372

RESUMEN

The free-state solution behaviors of small molecules profoundly affect their respective properties. It is becoming more obvious that compounds can adopt a three-phase equilibrium when placed in an aqueous solution, among soluble-lone molecule form, self-assembled aggregate form (nano-entities), and solid precipitate form. Recently, correlations have emerged between the existence of self-assemblies into drug nano-entities and unintended side effects. This report describes our pilot study involving a selection of drugs and dyes to explore if there may be a correlation between the existence of drug nano-entities and immune responses. We first implement practical strategies for detecting the drug self-assemblies using a combination of nuclear magnetic resonance (NMR), dynamic light scattering (DLS), transmission electron microscopy (TEM), and confocal microscopy. We then used enzyme-linked immunosorbent assays (ELISA) to monitor the modulation of immune responses on two cellular models, murine macrophage and human neutrophils, upon exposure to the drugs and dyes. The results suggest that exposure to some aggregates correlated with an increase in IL-8 and TNF-α in these model systems. Given this pilot study, further correlations merit pursuing on a larger scale given the importance and potential impact of drug-induced immune-related side effects.


Asunto(s)
Colorantes , Agua , Animales , Humanos , Ratones , Proyectos Piloto , Agua/química , Espectroscopía de Resonancia Magnética , Inmunidad
11.
J Mol Model ; 29(6): 183, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37212923

RESUMEN

CONTEXT: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the COVID-19 infection and responsible for millions of victims worldwide, remains a significant threat to public health. Even after the development of vaccines, research interest in the emergence of new variants is still prominent. Currently, the focus is on the search for effective and safe drugs, given the limitations and side effects observed for the synthetic drugs administered so far. In this sense, bioactive natural products that are widely used in the pharmaceutical industry due to their effectiveness and low toxicity have emerged as potential options in the search for safe drugs against COVID-19. Following this line, we screened 10 bioactive compounds derived from cholesterol for molecules capable of interacting with the receptor-binding domain (RBD) of the spike protein from SARS-CoV-2 (SC2Spike), responsible for the virus's invasion of human cells. Rounds of docking followed by molecular dynamics simulations and binding energy calculations enabled the selection of three compounds worth being experimentally evaluated against SARS-CoV-2. METHODS: The 3D structures of the cholesterol derivatives were prepared and optimized using the Spartan 08 software with the semi-empirical method PM3. They were then exported to the Molegro Virtual Docking (MVD®) software, where they were docked onto the RBD of a 3D structure of the SC2Spike protein that was imported from the Protein Data Bank (PDB). The best poses obtained from MVD® were subjected to rounds of molecular dynamics simulations using the GROMACS software, with the OPLS/AA force field. Frames from the MD simulation trajectories were used to calculate the ligand's free binding energies using the molecular mechanics - Poisson-Boltzmann surface area (MM-PBSA) method. All results were analyzed using the xmgrace and Visual Molecular Dynamics (VMD) software.


Asunto(s)
Productos Biológicos , COVID-19 , Humanos , SARS-CoV-2 , Productos Biológicos/farmacología , Simulación de Dinámica Molecular , Bases de Datos de Proteínas , Simulación del Acoplamiento Molecular , Antivirales/farmacología
12.
J Biomol Struct Dyn ; 41(22): 13348-13367, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36744449

RESUMEN

The COVID-19 pandemic caused by SARS-CoV-2 virus has created a global damage and has exposed the vulnerable side of scientific research towards novel diseases. The intensity of the pandemic is huge, with mortality rates of more than 6 million people worldwide in a span of 2 years. Considering the gravity of the situation, scientists all across the world are continuously attempting to create successful therapeutic solutions to combat the virus. Various vaccination strategies are being devised to ensure effective immunization against SARS-CoV-2 infection. SARS-CoV-2 spreads very rapidly, and the infection rate is remarkably high than other respiratory tract viruses. The viral entry and recognition of the host cell is facilitated by S protein of the virus. N protein along with NSP3 is majorly responsible for viral genome assembly and NSP12 performs polymerase activity for RNA synthesis. In this study, we have designed a multi-epitope, chimeric vaccine considering the two structural (S and N protein) and two non-structural proteins (NSP3 and NSP12) of SARS-CoV-2 virus. The aim is to induce immune response by generating antibodies against these proteins to target the viral entry and viral replication in the host cell. In this study, computational tools were used, and the reliability of the vaccine was verified using molecular docking, molecular dynamics simulation and immune simulation studies in silico. These studies demonstrate that the vaccine designed shows steady interaction with Toll like receptors with good stability and will be effective in inducing a strong and specific immune response in the body.Communicated by Ramaswamy H. Sarma.


Asunto(s)
COVID-19 , Vacunas Virales , Humanos , SARS-CoV-2/metabolismo , COVID-19/prevención & control , Vacunas contra la COVID-19 , Simulación del Acoplamiento Molecular , Pandemias/prevención & control , Reproducibilidad de los Resultados , Vacunas Virales/química , Epítopos de Linfocito B
13.
Antimicrob Agents Chemother ; 67(2): e0133122, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36700643

RESUMEN

Dengue virus (DENV) is a Flavivirus that causes the most prevalent arthropod-borne viral disease. Clinical manifestation of DENV infection ranges from asymptomatic to severe symptoms that can lead to death. Unfortunately, no antiviral treatments against DENV are currently available. In order to identify novel DENV inhibitors, we screened a library of 1,604 chemically diversified fragment-based compounds using DENV reporter viruses that allowed quantification of viral replication in infected cells. Following a validation screening, the two best inhibitor candidates were N-phenylpyridine-3-carboxamide (NPP3C) and 6-acetyl-1H-indazole (6A1HI). The half maximal effective concentration of NPP3C and 6A1H1 against DENV were 7.1 µM and 6.5 µM, respectively. 6A1H1 decreased infectious DENV particle production up to 1,000-fold without any cytotoxicity at the used concentrations. While 6A1HI was DENV-specific, NPP3C also inhibited the replication of other flaviviruses such as West Nile virus and Zika virus. Structure-activity relationship (SAR) studies with 151 analogues revealed key structural elements of NPP3C and 6A1HI required for their antiviral activity. Time-of-drug-addition experiments identified a postentry step as a target of these compounds. Consistently, using a DENV subgenomic replicon, we demonstrated that these compounds specifically impede the viral RNA replication step and exhibit a high genetic barrier-to-resistance. In contrast, viral RNA translation and the de novo biogenesis of DENV replication organelles were not affected. Overall, our data unveil NPP3C and 6A1H1 as novel DENV inhibitors. The information revealed by our SAR studies will help chemically optimize NPP3C and 6A1H1 in order to improve their anti-flaviviral potency and to challenge them in in vivo models.


Asunto(s)
Virus del Dengue , Dengue , Flavivirus , Infección por el Virus Zika , Virus Zika , Animales , Humanos , Antivirales/farmacología , Antivirales/uso terapéutico , Dengue/tratamiento farmacológico , Virus del Dengue/genética , Estadios del Ciclo de Vida , Replicación de ARN , ARN Viral/genética , Replicación Viral , Virus Zika/genética , ARN Subgenómico/genética
14.
J Mol Model ; 28(12): 380, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36342543

RESUMEN

In response to the COVID-19 pandemic, and the lack of effective and safe antivirals against it, we adopted a new approach in which food supplements with vital antiviral characteristics, low toxicity, and fast excretion have been targeted. The structures and chemical properties of the food supplements were compared to the promising antivirals against SARS-COV-2. Our goal was to exploit the food supplements to mimic the topical antivirals' functions but circumventing their severe side effects, which has limited the necessary dosage needed to exhibit the desired antiviral activity. On this line, after a comparative structural analysis of the chemicals mentioned above, and investigation of their potential mechanisms of action, we selected caffeine and some compounds of the vitamin B family and further applied molecular modeling techniques to evaluate their interactions with the RDB domain of the Spike protein of SARS-CoV-2 (SC2Spike) and its corresponding binding site on human ACE-2 (HssACE2). Our results pointed to vitamins B1 and B6 in the neutral form as potential binders to the HssACE2 RDB binding pocket that might be able to impair the SARS-CoV-2 mechanism of cell invasion, qualifying as potential leads for experimental investigation against COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Humanos , SARS-CoV-2 , Piridoxamina , Tiamina/metabolismo , Pandemias , Cafeína/farmacología , Niacinamida , Simulación del Acoplamiento Molecular , Antivirales/farmacología , Antivirales/química , Diseño de Fármacos , Vitaminas
15.
ACS Omega ; 7(36): 32805-32815, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36120038

RESUMEN

Recently, we reported a library of 82 compounds, selected from different databanks through virtual screening and docking studies, and pointed to 6 among them as potential repurposed dual binders to both the catalytic site and the secondary binding pockets of subunit A of ricin (RTA). Here, we report additional molecular modeling studies of an extended list of compounds from the original library. Rounds of flexible docking followed by molecular dynamics simulations and further rounds of MM-PBSA calculations using a more robust protocol, enabled a better investigation of the interactions of these compounds inside RTA, the elucidation of their dynamical behaviors, and updating the list of the most important residues for the ligand binding. Four compounds were pointed as potential repurposed ricin inhibitors that are worth being experimentally investigated.

16.
Arch Toxicol ; 96(9): 2559-2572, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35666269

RESUMEN

The misuse of novichok agents in assassination attempts has been reported in the international media since 2018. These relatively new class of neurotoxic agents is claimed to be more toxic than the agents of the G and V series and so far, there is no report yet in literature about potential antidotes against them. To shed some light into this issue, we report here the design and synthesis of NTMGMP, a surrogate of A-242 and also the first surrogate of a novichok agent useful for experimental evaluation of antidotes. Furthermore, the efficiency of the current commercial oximes to reactivate NTMGMP-inhibited acetylcholinesterase (AChE) was evaluated. The Ellman test was used to confirm the complete inhibition of AChE, and to compare the subsequent rates of reactivation in vitro as well as to evaluate aging. In parallel, molecular docking, molecular dynamics and MM-PBSA studies were performed on a computational model of the human AChE (HssAChE)/NTMGMP complex to assess the reactivation performances of the commercial oximes in silico. Experimental and theoretical studies matched the exact hierarchy of efficiency and pointed to trimedoxime as the most promising commercial oxime for reactivation of AChE inhibited by A-242.


Asunto(s)
Reactivadores de la Colinesterasa , Agentes Nerviosos , Acetilcolinesterasa , Antídotos/farmacología , Inhibidores de la Colinesterasa/toxicidad , Reactivadores de la Colinesterasa/farmacología , Humanos , Simulación del Acoplamiento Molecular , Agentes Nerviosos/toxicidad , Oximas/farmacología
17.
ACS Omega ; 7(15): 13155-13163, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35474811

RESUMEN

Fluorine (19F) NMR strategies are increasingly being employed for evaluating ligand binding to macromolecules, among many other uses. 19F NMR offers many advantages as a result of its sensitive spin 1/2 nucleus, 100% natural abundance, and wide chemical shift range. Moreover, because of its absence from biological samples, one can directly monitor ligand binding without background interference from the macromolecule. Therefore, all these aforementioned features make it an attractive approach for screening compounds. However, the detection of ligand binding, especially those with weak affinities, can require interpretations of minor changes in chemical shifts. Thus, chemical shift referencing is critical for accurate measurements and interpretations. Unfortunately, one cannot rely on spectrometer indirect referencing alone, and internal chemical references have sample-dependent issues. Here, we evaluated 10 potential candidate compounds that could serve as 19F NMR chemical references. Multiple factors were systematically evaluated for each candidate to monitor the suitability for 19F NMR screening purposes. These factors include aqueous solubility, buffer compatibility, salt compatibility, aqueous stability, tolerability to pH changes, temperature changes, and compound pooling. It was concluded that there was no ideal candidate, but five compounds had properties that met the screening requirements.

18.
ChemMedChem ; 17(10): e202200092, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35298873

RESUMEN

A focused drug repurposing approach is described where an FDA-approved drug is rationally selected for biological testing based on structural similarities to a fragment compound found to bind a target protein by an NMR screen. The approach is demonstrated by first screening a curated fragment library using 19 F NMR to discover a quality binder to ACE2, the human receptor required for entry and infection by the SARS-CoV-2 virus. Based on this binder, a highly related scaffold was derived and used as a "smart scaffold" or template in a computer-aided finger-print search of a library of FDA-approved or marketed drugs. The most interesting structural match involved the drug vortioxetine which was then experimentally shown by NMR spectroscopy to bind directly to human ACE2. Also, an ELISA assay showed that the drug inhibits the interaction of human ACE2 to the SARS-CoV-2 receptor-binding-domain (RBD). Moreover, our cell-culture infectivity assay confirmed that vortioxetine is active against SARS-CoV-2 and inhibits viral replication. Thus, the use of "smart scaffolds" based on binders from fragment screens may have general utility for identifying candidates of FDA-approved or marketed drugs as a rapid repurposing strategy. Similar approaches can be envisioned for other fields involving small-molecule chemical applications.


Asunto(s)
Antivirales , Reposicionamiento de Medicamentos , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Antivirales/farmacología , Reposicionamiento de Medicamentos/métodos , Humanos , Unión Proteica , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Vortioxetina , Tratamiento Farmacológico de COVID-19
19.
J Biomol Struct Dyn ; 40(18): 8384-8393, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-33860724

RESUMEN

In this work the DBL3x domain of the erythrocyte membrane protein from Plasmodium Falciparum (PfEMP1), was revisited as a potential molecular target for the development of new drugs against malaria. This protein interacts with chondroitin sulfate A (CSA), a glycosaminoglycan present in the substance fundamental for connective tissues of vertebrates and is implicated in malaria complications in pregnant women. We performed molecular docking and molecular dynamic studies of DBL3x complexed with CSA and five analogues, where the sulfate group was replaced by phosphate, in order to evaluate if the better electrostatic interactions provided by phosphate groups could afford better binders capable of preventing the binding of CSA to DBL3x. Results suggest that all proposed compounds have high affinity towards DBL3x and could bind better to the DBL3x domain of PfEMP1 than CSA, qualifying as potential inhibitors of this protein and, therefore, new potential leads for the drug design against malaria.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Malaria Falciparum , Malaria , Complicaciones Parasitarias del Embarazo , Animales , Antígenos de Protozoos/química , Sulfatos de Condroitina/química , Sulfatos de Condroitina/metabolismo , Sulfatos de Condroitina/farmacología , Eritrocitos/metabolismo , Femenino , Glicosaminoglicanos/metabolismo , Humanos , Malaria/complicaciones , Malaria/metabolismo , Malaria Falciparum/tratamiento farmacológico , Proteínas de la Membrana/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Fosfatos , Placenta/metabolismo , Plasmodium falciparum/química , Embarazo , Complicaciones Parasitarias del Embarazo/metabolismo , Proteínas Protozoarias/química , Sulfatos/metabolismo
20.
J Biomol Struct Dyn ; 40(12): 5309-5319, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-33410376

RESUMEN

Ricin is a potent cytotoxin with no available antidote. Its catalytic subunit, RTA, damages the ribosomal RNA (rRNA) of eukaryotic cells, preventing protein synthesis and eventually leading to cell death. The combination between easiness of obtention and high toxicity turns ricin into a potential weapon for terrorist attacks, urging the need of discovering effective antidotes. On this context, we used computational techniques, in order to identify potential ricin inhibitors among approved drugs. Two libraries were screened by two different docking algorithms, followed by molecular dynamics simulations and MM-PBSA calculations in order to corroborate the docking results. Three drugs were identified as potential ricin inhibitors: deferoxamine, leucovorin and plazomicin. Our calculations showed that these compounds were able to, simultaneously, form hydrogen bonds with residues of the catalytic site and the secondary binding site of RTA, qualifying as potential antidotes against intoxication by ricin.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Ricina , Antídotos , Reposicionamiento de Medicamentos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Ricina/química , Ricina/metabolismo , Ricina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...