Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Physiol ; 13: 904144, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35860659

RESUMEN

Initiation of respiratory support in the delivery room increases the risk and severity of brain injury in preterm neonates through two major pathways: an inflammatory pathway and a haemodynamic pathway. The relative contribution of each pathway on preterm brain injury is not known. We aimed to assess the role of the inflammatory and haemodynamic pathway on ventilation-induced brain injury (VIBI) in the preterm lamb. Fetal lambs (125 ± 1 day gestation) were exteriorised, instrumented and ventilated with a high tidal-volume (VT) injurious strategy for 15 min either with placental circulation intact to induce the inflammatory pathway only (INJINF; n = 7) or umbilical cord occluded to induce both the inflammatory and haemodynamic pathways (INJINF+HAE; n = 7). Sham controls were exteriorised but not ventilated (SHAM; n = 5) while unoperated controls (UNOP; n = 7) did not undergo fetal instrumentation. Fetuses were returned in utero following intervention and the ewe allowed to recover. Arterial blood gases and plasma were sampled periodically. Twenty-four hours following intervention, lambs were delivered and maintained on non-injurious ventilation for ∼40 min then brains were collected post-mortem for immunohistochemistry and RT-qPCR to assess inflammation, vascular pathology and cell death within white matter regions. Compared to INJINF lambs, INJINF+HAE lambs achieved a consistently higher VT during injurious ventilation and carotid blood flow was significantly lower than baseline by the end of ventilation. Throughout the 24 h recovery period, systemic arterial IL-6 levels of INJINF+HAE lambs were significantly higher than SHAM while there was no difference between INJINF and SHAM animals. At 24 h, mRNA expression levels of pro-inflammatory cytokines, tight junction proteins, markers of cell death, and histological injury indices of gliosis, blood vessel protein extravasation, oligodendrocyte injury and cell death were not different between groups. Injurious ventilation, irrespective of strategy, did not increase brain inflammation or injury 24 h later when compared to control animals. However, the haemodynamic pathway did influence carotid blood flow adaptations during injurious ventilation and increased systemic arterial IL-6 that may underlie long-term pathology. Future studies are required to further characterise the pathways and their long-term effects on VIBI.

2.
Neurotherapeutics ; 16(1): 231-243, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30225791

RESUMEN

Neonatal hypoxic ischemic encephalopathy (HIE) resulting from intrapartum asphyxia is a global problem that causes severe disabilities and up to 1 million deaths annually. A variant form of activated protein C, 3K3A-APC, has cytoprotective properties that attenuate brain injury in models of adult stroke. In this study, we compared the ability of 3K3A-APC and APC (wild-type (wt)) to attenuate neonatal brain injury, using the spiny mouse (Acomys cahirinus) model of intrapartum asphyxia. Pups were delivered at 38 days of gestation (term = 39 days), with an intrapartum hypoxic insult of 7.5 min (intrapartum asphyxia cohort), or immediate removal from the uterus (control cohort). After 1 h, pups received a subcutaneous injection of 3K3A-APC or wild-type APC (wtAPC) at 7 mg/kg, or vehicle (saline). At 24 h of age, pups were killed and brain tissue was collected for measurement of inflammation and cell death using RT-qPCR and histopathology. Intrapartum asphyxia increased weight loss, inflammation, and apoptosis/necrosis in the newborn brain. 3K3A-APC administration maintained body weight and ameliorated an asphyxia-induced increase of TGFß1 messenger RNA expression in the cerebral cortex, immune cell aggregation in the corpus callosum, and cell death in the deep gray matter and hippocampus. In the cortex, 3K3A-APC appeared to exacerbate the immune response to the hypoxic ischemic insult. While wtAPC reduced cell death in the corpus callosum and hippocampus following intrapartum asphyxia, it increased markers of neuro-inflammation and cell death in control pups. These findings suggest 3K3A-APC administration may be a useful therapy to reduce cell death and neonatal brain injury associated with HIE.


Asunto(s)
Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Fármacos Neuroprotectores/administración & dosificación , Proteína C/administración & dosificación , Proteínas Recombinantes/administración & dosificación , Animales , Animales Recién Nacidos , Femenino , Hipoxia-Isquemia Encefálica/metabolismo , Inyecciones Subcutáneas , Ratones , Embarazo , Factor de Crecimiento Transformador beta1/biosíntesis
3.
J Appl Physiol (1985) ; 126(1): 44-50, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30382807

RESUMEN

Erythropoietin (EPO) is being trialled in preterm infants to reduce brain injury, but high doses increase lung injury in ventilated preterm lambs. We aimed to determine whether early administration of lower doses of EPO could reduce ventilation-induced lung injury and systemic inflammation in preterm lambs. Ventilation was initiated in anaesthetized preterm lambs [125 ± 1 (SD) days gestation] using an injurious strategy for the first 15 min. Lambs were subsequently ventilated with a protective strategy for a total of 2 h. Lambs were randomized to receive either intravenous saline (Vent; n = 7) or intravenous 300 ( n = 5), 1,000 (EPO1000; n = 5), or 3,000 (EPO3000; n = 5) IU/kg of human recombinant EPO via an umbilical vein. Lung tissue was collected for molecular and histological assessment of inflammation and injury and compared with unventilated control lambs (UVC; n = 8). All ventilated groups had similar blood gas and ventilation parameters, but EPO1000 lambs had a lower fraction of inspired oxygen requirement and lower alveolar-arterial difference in oxygen. Vent and EPO lambs had increased lung interleukin (IL)-1ß, IL-6, and IL-8 mRNA, early lung injury genes connective tissue growth factor, early growth response protein 1, and cysteine-rich 61, and liver serum amyloid A3 mRNA compared with UVCs; no difference was observed between Vent and EPO groups. Histological lung injury was increased in Vent and EPO groups compared with UVCs, but EPO3000 lambs had increased lung injury scores compared with VENT only. Early low-doses of EPO do not exacerbate ventilation-induced lung inflammation and injury and do not provide any short-term respiratory benefit. High doses (≥3,000 IU/kg) likely exacerbate lung inflammation and injury in ventilated preterm lambs. NEW & NOTEWORTHY Trials are ongoing to assess the efficacy of erythropoietin (EPO) to provide neuroprotection for preterm infants. However, high doses of EPO increase ventilation-induced lung injury (VILI) in preterm lambs. We investigated whether early lower doses of EPO may reduce VILI. We found that lower doses did not reduce, but did not increase, VILI, while high doses (≥3,000 IU/kg) increase VILI. Therefore, lower doses of EPO should be used in preterm infants, particularly those receiving respiratory support.


Asunto(s)
Eritropoyetina/efectos adversos , Respiración Artificial/efectos adversos , Lesión Pulmonar Inducida por Ventilación Mecánica/inducido químicamente , Animales , Animales Recién Nacidos , Relación Dosis-Respuesta a Droga , Eritropoyetina/administración & dosificación , Eritropoyetina/sangre , Inflamación/etiología , Inflamación/metabolismo , Hígado/metabolismo , Pulmón/patología , Ovinos , Lesión Pulmonar Inducida por Ventilación Mecánica/metabolismo , Lesión Pulmonar Inducida por Ventilación Mecánica/patología
4.
Front Pediatr ; 6: 286, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30410874

RESUMEN

Background: Delaying umbilical cord clamping until after aeration of the lung (physiological-based cord clamping; PBCC) maintains cardiac output and oxygenation in preterm lambs at birth, however, its efficacy after intrauterine inflammation is not known. Given the high incidence of chorioamnionitis in preterm infants, we investigated whether PBCC conferred any benefits compared to immediate cord clamping (ICC) in preterm lambs exposed antenatally to 7 days of intrauterine inflammation. Methods: Ultrasound guided intraamniotic injection of 20 mg Lipopolysaccharide (from E. coli:055:B5) was administered to pregnant ewes at 0.8 gestation. Seven days later, ewes were anesthetized, preterm fetuses exteriorised via cesarean section, and instrumented for continuous measurement of pulmonary, systemic and cerebral pressures and flows, and systemic, and cerebral oxygenation. Lambs were then randomized to either PBCC, whereupon ventilation was initiated and maintained for 3 min prior to umbilical cord clamping, or ICC where the umbilical cord was cut and ventilation initiated 30 s later. Ventilation was maintained for 30 min. Results: ICC caused a rapid fall in systemic (by 25%) and cerebral (by 11%) oxygen saturation in ICC lambs, concurrent with a rapid increase in carotid arterial pressure and heart rate. The overshoot in carotid arterial pressure was sustained in ICC lambs for the first 20 min of the study. PBCC maintained cardiac output and prevented the fall in cerebral oxygen delivery at birth. PBCC lambs had lower respiratory compliance and higher respiratory requirements throughout the study. Conclusion: PBCC mitigated the adverse effects of ICC on oxygenation and cardiac output, and therefore could be more beneficial in preterm babies exposed to antenatal inflammation as it maintains cardiac output and oxygen delivery. The increased respiratory requirements require further investigation in this sub-group of preterm infants.

5.
Front Pediatr ; 5: 16, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28261573

RESUMEN

Birth asphyxia is a significant global health problem, responsible for ~1.2 million neonatal deaths each year worldwide. Those who survive often suffer from a range of health issues including brain damage-manifesting as cerebral palsy (CP)-respiratory insufficiency, cardiovascular collapse, and renal dysfunction, to name a few. Although the majority of research is directed toward reducing the brain injury that results from intrapartum birth asphyxia, the multi-organ injury observed in surviving neonates is of equal importance. Despite the advent of hypothermia therapy for the treatment of hypoxic-ischemic encephalopathy (HIE), treatment options following asphyxia at birth remain limited, particularly in low-resource settings where the incidence of birth asphyxia is highest. Furthermore, although cooling of the neonate results in improved neurological outcomes for a small proportion of treated infants, it does not provide any benefit to the other organ systems affected by asphyxia at birth. The aim of this review is to summarize the current knowledge of the multi-organ effects of intrapartum asphyxia, with particular reference to the findings from our laboratory using the precocial spiny mouse to model birth asphyxia. Furthermore, we reviewed the current treatments available for neonates who have undergone intrapartum asphyxia, and highlight the emergence of maternal dietary creatine supplementation as a preventative therapy, which has been shown to provide multi-organ protection from birth asphyxia-induced injury in our preclinical studies. This cheap and effective nutritional supplement may be the key to reducing birth asphyxia-induced death and disability, particularly in low-resource settings where current treatments are unavailable.

6.
Dev Neurosci ; 39(1-4): 298-309, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28346912

RESUMEN

Erythropoietin (EPO) is being trialed in preterm neonates for neuroprotection. We have recently demonstrated that a single high bolus dose (5,000 IU/kg) of recombinant human EPO amplified preterm lung and brain ventilation-induced injury. We aimed to determine the optimal dose of EPO to reduce ventilation-induced cerebral white matter inflammation and injury in preterm lambs. Lambs (0.85 gestation) were ventilated with an injurious strategy for 15 min followed by conventional ventilation for 105 min. Lambs were randomized to no treatment (VENT; n = 8) or received a bolus dose of EPO (EPREX®): 300 IU/kg (EPO 300; n = 5), 1,000 IU/kg (EPO 1,000; n = 5), or 3,000 IU/kg (EPO 3,000; n = 5). Physiological parameters were measured throughout the study. After 2 h, brains were collected for analysis; real-time quantitative polymerase chain reaction and immunohistochemistry were used to assess inflammation, cell death, and vascular leakage in the periventricular and subcortical white matter (PVWM; SCWM). Molecular and histological inflammatory indices in the PVWM were not different between groups. EPO 300 lambs had higher IL-6 (p = 0.006) and caspase-3 (p = 0.025) mRNA expression in the SCWM than VENT lambs. Blood-brain barrier (BBB) occludin mRNA levels were higher in EPO 3,000 lambs in the PVWM and SCWM than VENT lambs. The number of blood vessels with protein extravasation in the SCWM was lower in EPO 1,000 (p = 0.010) and EPO 3,000 (p = 0.025) lambs compared to VENT controls but not different between groups in the PVWM. Early administration of EPO at lower doses neither reduced nor exacerbated cerebral white matter inflammation or injury. 3,000 IU/kg EPO may provide neuroprotection by improving BBB integrity.


Asunto(s)
Lesiones Encefálicas/patología , Eritropoyetina/farmacología , Fármacos Neuroprotectores/farmacología , Respiración Artificial/efectos adversos , Sustancia Blanca/efectos de los fármacos , Animales , Animales Recién Nacidos , Barrera Hematoencefálica/efectos de los fármacos , Lesiones Encefálicas/etiología , Distribución Aleatoria , Proteínas Recombinantes/farmacología , Ovinos , Oveja Doméstica , Sustancia Blanca/patología
7.
Pediatr Res ; 81(4): 646-653, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27997529

RESUMEN

BACKGROUND: Acute kidney injury affects ~70% of asphyxiated newborns, and increases their risk of developing chronic kidney disease later in life. Acute kidney injury is driven by renal oxygen deprivation during asphyxia, thus we hypothesized that creatine administered antenatally would protect the kidney from the long-term effects of birth asphyxia. METHODS: Pregnant spiny mice were fed standard chow or chow supplemented with 5% creatine from 20-d gestation (midgestation). One day prior to term (37-d gestation), pups were delivered by caesarean or subjected to intrauterine asphyxia. Litters were allocated to one of two time-points. Kidneys were collected at 1 mo of age to estimate nephron number (stereology). Renal function (excretory profile and glomerular filtration rate) was measured at 3 mo of age, and kidneys then collected for assessment of glomerulosclerosis. RESULTS: Compared with controls, at 1 mo of age male (but not female) birth-asphyxia offspring had 20% fewer nephrons (P < 0.05). At 3 mo of age male birth-asphyxia offspring had 31% lower glomerular filtration rate (P < 0.05) and greater glomerular collagen IV content (P < 0.01). Antenatal creatine prevented these renal injuries arising from birth asphyxia. CONCLUSION: Maternal creatine supplementation during pregnancy may be an effective prophylactic to prevent birth asphyxia induced acute kidney injury and the emergence of chronic kidney disease.


Asunto(s)
Lesión Renal Aguda/prevención & control , Asfixia Neonatal/fisiopatología , Creatina/uso terapéutico , Riñón/fisiopatología , Fenómenos Fisiologicos Nutricionales Maternos , Lesión Renal Aguda/fisiopatología , Animales , Animales Recién Nacidos , Colágeno Tipo IV/metabolismo , Creatina/administración & dosificación , Suplementos Dietéticos , Femenino , Fallo Renal Crónico/fisiopatología , Fallo Renal Crónico/prevención & control , Glomérulos Renales/fisiopatología , Masculino , Ratones , Nefronas/fisiopatología , Tamaño de los Órganos , Oxígeno/metabolismo , Embarazo , Preñez
8.
Pediatr Res ; 80(6): 852-860, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27466898

RESUMEN

BACKGROUND: Maternal antenatal creatine supplementation protects the brain, kidney, and diaphragm against the effects of birth asphyxia in the spiny mouse. In this study, we examined creatine's potential to prevent damage to axial skeletal muscles. METHODS: Pregnant spiny mice were fed a control or creatine-supplemented diet from mid-pregnancy, and 1 d before term (39 d), fetuses were delivered by c-section with or without 7.5 min of birth asphyxia. At 24 h or 33 ± 2 d after birth, gastrocnemius muscles were obtained for ex-vivo study of twitch-tension, muscle fatigue, and structural and histochemical analysis. RESULTS: Birth asphyxia significantly reduced cross-sectional area of all muscle fiber types (P < 0.05), and increased fatigue caused by repeated tetanic contractions at 24 h of age (P < 0.05). There were fewer (P < 0.05) Type I and IIa fibers and more (P < 0.05) Type IIb fibers in male gastrocnemius at 33 d of age. Muscle oxidative capacity was reduced (P < 0.05) in males at 24 h and 33 d and in females at 24 h only. Maternal creatine treatment prevented all asphyxia-induced changes in the gastrocnemius, improved motor performance. CONCLUSION: This study demonstrates that creatine loading before birth protects the muscle from asphyxia-induced damage at birth.


Asunto(s)
Asfixia Neonatal/prevención & control , Creatina/administración & dosificación , Músculo Esquelético/efectos de los fármacos , Animales , Animales Recién Nacidos , Asfixia Neonatal/patología , Asfixia Neonatal/fisiopatología , Creatina/metabolismo , Modelos Animales de Enfermedad , Femenino , Miembro Posterior , Masculino , Murinae , Contracción Muscular/efectos de los fármacos , Fatiga Muscular/efectos de los fármacos , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Oxidación-Reducción , Embarazo
9.
J Paediatr Child Health ; 52(6): 643-8, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27088264

RESUMEN

AIM: Pneumothorax is a common emergency affecting extremely preterm. In adult studies, lung ultrasound has performed better than chest x-ray in the diagnosis of pneumothorax. The purpose of this study was to determine the efficacy of lung ultrasound (LUS) examination to detect pneumothorax using a preterm animal model. METHODS: This was a prospective, observational study using newborn Border-Leicester lambs at gestational age = 126 days (equivalent to gestational age = 26 weeks in humans) receiving mechanical ventilation from birth to 2 h of life. At the conclusion of the experiment, LUS was performed, the lambs were then euthanised and a post-mortem exam was immediately performed. We used previously published ultrasound techniques to identify pneumothorax. Test characteristics of LUS to detect pneumothorax were calculated, using the post-mortem exam as the 'gold standard' test. RESULTS: Nine lambs (18 lungs) were examined. Four lambs had a unilateral pneumothorax, all of which were identified by LUS with no false positives. CONCLUSIONS: This was the first study to use post-mortem findings to test the efficacy of LUS to detect pneumothorax in a newborn animal model. Lung ultrasound accurately detected pneumothorax, verified by post-mortem exam, in premature, newborn lambs.


Asunto(s)
Neumotórax/diagnóstico por imagen , Ovinos , Ultrasonografía , Animales , Autopsia , Humanos , Pulmón , Estudios Prospectivos
10.
PLoS One ; 11(3): e0149840, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26930669

RESUMEN

Using a model of birth asphyxia, we previously reported significant structural and functional deficits in the diaphragm muscle in spiny mice, deficits that are prevented by supplementing the maternal diet with 5% creatine from mid-pregnancy. The long-term effects of this exposure are unknown. Pregnant spiny mice were fed control or 5% creatine-supplemented diet for the second half of pregnancy, and fetuses were delivered by caesarean section with or without 7.5 min of in-utero asphyxia. Surviving pups were raised by a cross-foster dam until 33±2 days of age when they were euthanized to obtain the diaphragm muscle for ex-vivo study of twitch tension and muscle fatigue, and for structural and enzymatic analyses. Functional analysis of the diaphragm revealed no differences in single twitch contractile parameters between any groups. However, muscle fatigue, induced by stimulation of diaphragm strips with a train of pulses (330 ms train/sec, 40 Hz) for 300 sec, was significantly greater for asphyxia pups compared with controls (p<0.05), and this did not occur in diaphragms of creatine + asphyxia pups. Birth asphyxia resulted in a significant increase in the proportion of glycolytic, fast-twitch fibres and a reduction in oxidative capacity of Type I and IIb fibres in male offspring, as well as reduced cross-sectional area of all muscle fibre types (Type I, IIa, IIb/d) in both males and females at 33 days of age. None of these changes were observed in creatine + asphyxia animals. Thus, the changes in diaphragm fatigue and structure induced by birth asphyxia persist long-term but are prevented by maternal creatine supplementation.


Asunto(s)
Asfixia Neonatal/tratamiento farmacológico , Asfixia Neonatal/fisiopatología , Creatina/uso terapéutico , Diafragma/efectos de los fármacos , Diafragma/fisiopatología , Animales , Animales Recién Nacidos , Asfixia Neonatal/patología , Diafragma/patología , Suplementos Dietéticos/análisis , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Contracción Muscular/efectos de los fármacos , Fatiga Muscular/efectos de los fármacos , Embarazo
11.
Amino Acids ; 48(8): 1819-30, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26695944

RESUMEN

Recent evidence obtained from a rodent model of birth asphyxia shows that supplementation of the maternal diet with creatine during pregnancy protects the neonate from multi-organ damage. However, the effect of increasing creatine intake on creatine homeostasis and biosynthesis in females, particularly during pregnancy, is unknown. This study assessed the impact of creatine supplementation on creatine homeostasis, body composition, capacity for de novo creatine synthesis and renal excretory function in non-pregnant and pregnant spiny mice. Mid-gestation pregnant and virgin spiny mice were fed normal chow or chow supplemented with 5 % w/w creatine for 18 days. Weight gain, urinary creatine and electrolyte excretion were assessed during supplementation. At post mortem, body composition was assessed by Dual-energy X-ray absorptiometry, or tissues were collected to assess creatine content and mRNA expression of the creatine synthesising enzymes arginine:glycine amidinotransferase (AGAT) and guanidinoacetate methyltransferase (GAMT) and the creatine transporter (CrT1). Protein expression of AGAT and GAMT was also assessed by Western blot. Key findings of this study include no changes in body weight or composition with creatine supplementation; increased urinary creatine excretion in supplemented spiny mice, with increased sodium (P < 0.001) and chloride (P < 0.05) excretion in pregnant dams after 3 days of supplementation; lowered renal AGAT mRNA (P < 0.001) and protein (P < 0.001) expressions, and lowered CrT1 mRNA expression in the kidney (P < 0.01) and brain (P < 0.001). Creatine supplementation had minimal impact on creatine homeostasis in either non-pregnant or pregnant spiny mice. Increasing maternal dietary creatine consumption could be a useful treatment for birth asphyxia.


Asunto(s)
Creatina , Suplementos Dietéticos , Homeostasis/efectos de los fármacos , Riñón/metabolismo , Amidinotransferasas/biosíntesis , Animales , Creatina/farmacocinética , Creatina/farmacología , Femenino , Guanidinoacetato N-Metiltransferasa/biosíntesis , Homeostasis/fisiología , Pruebas de Función Renal , Proteínas de Transporte de Membrana/metabolismo , Ratones , Embarazo
12.
Front Pediatr ; 3: 97, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26618148

RESUMEN

The initiation of ventilation in the delivery room is one of the most important but least controlled interventions a preterm infant will face. Tidal volumes (V T) used in the neonatal intensive care unit are carefully measured and adjusted. However, the V Ts that an infant receives during resuscitation are usually unmonitored and highly variable. Inappropriate V Ts delivered to preterm infants during respiratory support substantially increase the risk of injury and inflammation to the lungs and brain. These may cause cerebral blood flow instability and initiate a cerebral inflammatory cascade. The two pathways increase the risk of brain injury and potential life-long adverse neurodevelopmental outcomes. The employment of new technologies, including respiratory function monitors, can improve and guide the optimal delivery of V Ts and reduce confounders, such as leak. Better respiratory support in the delivery room has the potential to improve both respiratory and neurological outcomes in this vulnerable population.

13.
BMC Pregnancy Childbirth ; 15: 92, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25885219

RESUMEN

BACKGROUND: Pregnancy induces adaptations in maternal metabolism to meet the increased need for nutrients by the placenta and fetus. Creatine is an important intracellular metabolite obtained from the diet and also synthesised endogenously. Experimental evidence suggests that the fetus relies on a maternal supply of creatine for much of gestation. However, the impact of pregnancy on maternal creatine homeostasis is unclear. We hypothesise that alteration of maternal creatine homeostasis occurs during pregnancy to ensure adequate levels of this essential substrate are available for maternal tissues, the placenta and fetus. This study aimed to describe maternal creatine homeostasis from mid to late gestation in the precocial spiny mouse. METHODS: Plasma creatine concentration and urinary excretion were measured from mid to late gestation in pregnant (n = 8) and age-matched virgin female spiny mice (n = 6). At term, body composition and organ weights were assessed and tissue total creatine content determined. mRNA expression of the creatine synthesising enzymes arginine:glycine amidinotransferase (AGAT) and guanidinoacetate methyltransferase (GAMT), and the creatine transporter (CrT1) were assessed by RT-qPCR. Protein expression of AGAT and GAMT was also assessed by western blot analysis. RESULTS: Plasma creatine and renal creatine excretion decreased significantly from mid to late gestation (P < 0.001, P < 0.05, respectively). Pregnancy resulted in increased lean tissue (P < 0.01), kidney (P < 0.01), liver (P < 0.01) and heart (P < 0.05) mass at term. CrT1 expression was increased in the heart (P < 0.05) and skeletal muscle (P < 0.05) at term compared to non-pregnant tissues, and creatine content of the heart (P < 0.05) and kidney (P < 0.001) were also increased at this time. CrT1 mRNA expression was down-regulated in the liver (<0.01) and brain (<0.01) of pregnant spiny mice at term. Renal AGAT mRNA (P < 0.01) and protein (P < 0.05) expression were both significantly up-regulated at term, with decreased expression of AGAT mRNA (<0.01) and GAMT protein (<0.05) observed in the term pregnant heart. Brain AGAT (<0.01) and GAMT (<0.001) mRNA expression were also decreased at term. CONCLUSION: Change of maternal creatine status (increased creatine synthesis and reduced creatine excretion) may be a necessary adjustment of maternal physiology to pregnancy to meet the metabolic demands of maternal tissues, the placenta and developing fetus.


Asunto(s)
Amidinotransferasas/genética , Creatina/metabolismo , Guanidinoacetato N-Metiltransferasa/genética , Homeostasis/genética , Proteínas de Transporte de Membrana/genética , Embarazo/metabolismo , ARN Mensajero/metabolismo , Amidinotransferasas/metabolismo , Animales , Western Blotting , Femenino , Regulación de la Expresión Génica , Guanidinoacetato N-Metiltransferasa/metabolismo , Murinae , Embarazo/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
14.
Dev Neurosci ; 36(2): 83-94, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24863806

RESUMEN

An increased incidence of mental illness disorders is found in children and adolescents born to mothers who experienced an infection-based illness during pregnancy. Animal models to study the prenatal origin of such outcomes of pregnancy have largely used conventional rodents, which are immature (altricial) at birth compared with the human neonate. In this study, we used the precocial spiny mouse (Acomys cahirinus), whose offspring have completed organogenesis at birth, and administered a single subcutaneous injection of a 5 mg/kg dose of the viral mimetic poly I:C (polyriboinosinic-polyribocytidylic acid) at mid gestation (20 days; term is 39 days). Prenatal exposure to poly I:C caused a transient weight loss in the pregnant dam, produced a downregulation of the proinflammatory cytokine tumour necrosis factor-α in the fetal brain, and resulted in abnormalities in sensorimotor gating and reduced social interaction, memory and learning in juvenile offspring. No changes in exploratory activity or anxiety and fear behaviours were found between the treatment groups. This study provides evidence that, in a rodent model that more closely resembles human brain development, prenatal infection can lead to behavioural abnormalities in postnatal life.


Asunto(s)
Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Citocinas/metabolismo , Aprendizaje/efectos de los fármacos , Memoria/efectos de los fármacos , Poli I-C/toxicidad , Efectos Tardíos de la Exposición Prenatal/metabolismo , Animales , Animales Recién Nacidos , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Femenino , Embarazo
15.
Reprod Sci ; 20(9): 1096-102, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23427185

RESUMEN

We have previously reported that maternal creatine supplementation protects the neonate from hypoxic injury. Here, we investigated whether maternal creatine supplementation altered expression of the creatine synthesis enzymes (arginine:glycine amidinotransferase [AGAT], guanidinoaceteate methyltransferase [GAMT]) and the creatine transporter (solute carrier family 6 [neurotransmitter transporter, creatine] member 8: SLC6A8) in the term offspring. Pregnant spiny mice were fed a 5% creatine monohydrate diet from midgestation (day 20) to term (39 days). Placentas and neonatal kidney, liver, heart, and brain collected at 24 hours of age underwent quantitative polymerase chain reaction and Western blot analysis. Maternal creatine had no effect on the expression of AGAT and GAMT in neonatal kidney and liver, but mRNA expression of AGAT in brain tissues was significantly decreased in both male and female neonates born to mothers who were fed the creatine diet. SLC6A8 expression was not affected by maternal dietary creatine loading in any tissues. Maternal dietary creatine supplementation from midgestation in the spiny mouse did not alter the capacity for creatine synthesis or transport.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Creatinina/administración & dosificación , Creatinina/metabolismo , Suplementos Dietéticos , Fenómenos Fisiologicos de la Nutrición Prenatal , Amidinotransferasas/genética , Amidinotransferasas/metabolismo , Animales , Animales Recién Nacidos , Encéfalo/metabolismo , Femenino , Edad Gestacional , Guanidinoacetato N-Metiltransferasa/genética , Guanidinoacetato N-Metiltransferasa/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Masculino , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Murinae , Miocardio/metabolismo , Placenta/metabolismo , Embarazo , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...