Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 10(3): 3214-3221, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-26816294

RESUMEN

Nanometric field-effect-transistor (FET) sensors are made on the tip of spear-shaped dual carbon nanoelectrodes derived from carbon deposition inside double-barrel nanopipettes. The easy fabrication route allows deposition of semiconductors or conducting polymers to comprise the transistor channel. A channel from electrodeposited poly pyrrole (PPy) exhibits high sensitivity toward pH changes. This property is exploited by immobilizing hexokinase on PPy nano-FETs to give rise to a selective ATP biosensor. Extracellular pH and ATP gradients are key biochemical constituents in the microenvironment of living cells; we monitor their real-time changes in relation to cancer cells and cardiomyocytes. The highly localized detection is possible because of the high aspect ratio and the spear-like design of the nano-FET probes. The accurately positioned nano-FET sensors can detect concentration gradients in three-dimensional space, identify biochemical properties of a single living cell, and after cell membrane penetration perform intracellular measurements.


Asunto(s)
Adenosina Trifosfato/análisis , Técnicas Biosensibles/instrumentación , Análisis de la Célula Individual/instrumentación , Transistores Electrónicos , Adenosina Trifosfato/metabolismo , Línea Celular Tumoral , Disulfuros/química , Electrodos , Enzimas Inmovilizadas/metabolismo , Diseño de Equipo , Hexoquinasa/metabolismo , Humanos , Molibdeno/química , Nanoestructuras/química , Nanoestructuras/ultraestructura , Polímeros/química , Pirroles/química , Saccharomyces cerevisiae/enzimología
2.
Cell Rep ; 14(1): 140-151, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26725114

RESUMEN

Arrhythmogenesis during heart failure is a major clinical problem. Regional electrical gradients produce arrhythmias, and cellular ionic transmembrane gradients are its originators. We investigated whether the nanoscale mechanosensitive properties of cardiomyocytes from failing hearts have a bearing upon the initiation of abnormal electrical activity. Hydrojets through a nanopipette indent specific locations on the sarcolemma and initiate intracellular calcium release in both healthy and heart failure cardiomyocytes, as well as in human failing cardiomyocytes. In healthy cells, calcium is locally confined, whereas in failing cardiomyocytes, calcium propagates. Heart failure progressively stiffens the membrane and displaces sub-sarcolemmal mitochondria. Colchicine in healthy cells mimics the failing condition by stiffening the cells, disrupting microtubules, shifting mitochondria, and causing calcium release. Uncoupling the mitochondrial proton gradient abolished calcium initiation in both failing and colchicine-treated cells. We propose the disruption of microtubule-dependent mitochondrial mechanosensor microdomains as a mechanism for abnormal calcium release in failing heart.


Asunto(s)
Señalización del Calcio , Insuficiencia Cardíaca/metabolismo , Mecanotransducción Celular , Microtúbulos/metabolismo , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Calcio/metabolismo , Células Cultivadas , Insuficiencia Cardíaca/patología , Humanos , Microtúbulos/patología , Mitocondrias Cardíacas/patología , Miocitos Cardíacos/patología
3.
Nano Lett ; 14(3): 1202-7, 2014 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-24555574

RESUMEN

Experimental data on dynamic interactions between individual nanoparticles and membrane processes at nanoscale, essential for biomedical applications of nanoparticles, remain scarce due to limitations of imaging techniques. We were able to follow single 200 nm carboxyl-modified particles interacting with identified membrane structures at the rate of 15 s/frame using a scanning ion conductance microscope modified for simultaneous high-speed topographical and fluorescence imaging. The imaging approach demonstrated here opens a new window into the complexity of nanoparticle-cell interactions.


Asunto(s)
Membrana Celular/metabolismo , Nanopartículas/química , Línea Celular , Humanos , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Microscopía por Video/instrumentación , Microscopía por Video/métodos
4.
Am J Physiol Heart Circ Physiol ; 304(1): H1-11, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23086993

RESUMEN

The quest for nonoptical imaging methods that can surmount light diffraction limits resulted in the development of scanning probe microscopes. However, most of the existing methods are not quite suitable for studying biological samples. The scanning ion conductance microscope (SICM) bridges the gap between the resolution capabilities of atomic force microscope and scanning electron microscope and functional capabilities of conventional light microscope. A nanopipette mounted on a three-axis piezo-actuator, scans a sample of interest and ion current is measured between the pipette tip and the sample. The feedback control system always keeps a certain distance between the sample and the pipette so the pipette never touches the sample. At the same time pipette movement is recorded and this generates a three-dimensional topographical image of the sample surface. SICM represents an alternative to conventional high-resolution microscopy, especially in imaging topography of live biological samples. In addition, the nanopipette probe provides a host of added modalities, for example using the same pipette and feedback control for efficient approach and seal with the cell membrane for ion channel recording. SICM can be combined in one instrument with optical and fluorescent methods and allows drawing structure-function correlations. It can also be used for precise mechanical force measurements as well as vehicle to apply pressure with precision. This can be done on living cells and tissues for prolonged periods of time without them loosing viability. The SICM is a multifunctional instrument, and it is maturing rapidly and will open even more possibilities in the near future.


Asunto(s)
Fenómenos Fisiológicos Celulares , Microscopía/instrumentación , Nanotecnología/instrumentación , Animales , Técnicas Biosensibles/instrumentación , Diseño de Equipo , Transferencia Resonante de Energía de Fluorescencia/instrumentación , Humanos , Imagenología Tridimensional , Canales Iónicos/metabolismo , Mecanotransducción Celular , Potenciales de la Membrana , Microelectrodos , Técnicas de Placa-Clamp/instrumentación , Receptores Acoplados a Proteínas G/metabolismo , Sistemas de Mensajero Secundario
5.
Nanomedicine (Lond) ; 8(5): 725-737, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23140503

RESUMEN

AIM: To investigate the effect of surface charge of therapeutic nanoparticles on sarcolemmal ionic homeostasis and the initiation of arrhythmias. MATERIALS & METHODS: Cultured neonatal rat myocytes were exposed to 50 nm-charged polystyrene latex nanoparticles and examined using a combination of hopping probe scanning ion conductance microscopy, optical recording of action potential characteristics and patch clamp. RESULTS: Positively charged, amine-modified polystyrene latex nanoparticles showed cytotoxic effects and induced large-scale damage to cardiomyocyte membranes leading to calcium alternans and cell death. By contrast, negatively charged, carboxyl-modified polystyrene latex nanoparticles (NegNPs) were not overtly cytotoxic but triggered formation of 50-250-nm nanopores in the membrane. Cells exposed to NegNPs revealed pro-arrhythmic events, such as delayed afterdepolarizations, reduction in conduction velocity and pathological increment of action potential duration together with an increase in ionic current throughout the membrane, carried by the nanopores. CONCLUSION: The utilization of charged nanoparticles is a novel concept for targeting cardiac excitability. However, this unique nanoscopic investigation reveals an altered electrophysiological substrate, which sensitized the heart cells towards arrhythmias.


Asunto(s)
Arritmias Cardíacas/inducido químicamente , Miocitos Cardíacos/efectos de los fármacos , Nanopartículas/química , Nanopartículas/toxicidad , Potenciales de Acción/efectos de los fármacos , Animales , Calcio/metabolismo , Cardiotoxinas/química , Cardiotoxinas/metabolismo , Cardiotoxinas/toxicidad , Células Cultivadas , Miocitos Cardíacos/citología , Nanopartículas/metabolismo , Técnicas de Placa-Clamp , Ratas
6.
J Cell Biol ; 197(4): 499-508, 2012 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-22564416

RESUMEN

Current knowledge of the structural changes taking place during clathrin-mediated endocytosis is largely based on electron microscopy images of fixed preparations and x-ray crystallography data of purified proteins. In this paper, we describe a study of clathrin-coated pit dynamics in living cells using ion conductance microscopy to directly image the changes in pit shape, combined with simultaneous confocal microscopy to follow molecule-specific fluorescence. We find that 70% of pits closed with the formation of a protrusion that grew on one side of the pit, covered the entire pit, and then disappeared together with pit-associated clathrin-enhanced green fluorescent protein (EGFP) and actin-binding protein-EGFP (Abp1-EGFP) fluorescence. This was in contrast to conventionally closing pits that closed and cleaved from flat membrane sheets and lacked accompanying Abp1-EGFP fluorescence. Scission of both types of pits was found to be dynamin-2 dependent. This technique now enables direct spatial and temporal correlation between functional molecule-specific fluorescence and structural information to follow key biological processes at cell surfaces.


Asunto(s)
Clatrina/metabolismo , Invaginaciones Cubiertas de la Membrana Celular/metabolismo , Animales , Células COS , Chlorocebus aethiops , Clatrina/química , Dinamina II/metabolismo , Endocitosis , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Microscopía
7.
J Biomed Biotechnol ; 2011: 569628, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22028589

RESUMEN

The sarcomeric Z-disc defines the lateral borders of the sarcomere and has primarily been seen as a structure important for mechanical stability. This view has changed dramatically within the last one or two decades. A multitude of novel Z-disc proteins and their interacting partners have been identified, which has led to the identification of additional functions and which have now been assigned to this structure. This includes its importance for intracellular signalling, for mechanosensation and mechanotransduction in particular, an emerging importance for protein turnover and autophagy, as well as its molecular links to the t-tubular system and the sarcoplasmic reticulum. Moreover, the discovery of mutations in a wide variety of Z-disc proteins, which lead to perturbations of several of the above-mentioned systems, gives rise to a diverse group of diseases which can be termed Z-discopathies. This paper provides a brief overview of these novel aspects as well as points to future research directions.


Asunto(s)
Cardiomiopatías/metabolismo , Enfermedades Musculares/metabolismo , Sarcómeros/química , Sarcómeros/metabolismo , Animales , Humanos , Proteínas Musculares/química , Proteínas Musculares/metabolismo
8.
Hepatology ; 54(4): 1282-92, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21809354

RESUMEN

UNLABELLED: Intrahepatic cholestasis of pregnancy may be complicated by fetal arrhythmia, fetal hypoxia, preterm labor, and, in severe cases, intrauterine death. The precise etiology of fetal death is not known. However, taurocholate has been demonstrated to cause arrhythmia and abnormal calcium dynamics in cardiomyocytes. To identify the underlying reason for increased susceptibility of fetal cardiomyocytes to arrhythmia, we studied myofibroblasts (MFBs), which appear during structural remodeling of the adult diseased heart. In vitro, they depolarize rat cardiomyocytes via heterocellular gap junctional coupling. Recently, it has been hypothesized that ventricular MFBs might appear in the developing human heart, triggered by physiological fetal hypoxia. However, their presence in the fetal heart (FH) and their proarrhythmogenic effects have not been systematically characterized. Immunohistochemistry demonstrated that ventricular MFBs transiently appear in the human FH during gestation. We established two in vitro models of the maternal heart (MH) and FH, both exposed to increasing doses of taurocholate. The MH model consisted of confluent strands of rat cardiomyocytes, whereas for the FH model, we added cardiac MFBs on top of cardiomyocytes. Taurocholate in the FH model, but not in the MH model, slowed conduction velocity from 19 to 9 cm/s, induced early after depolarizations, and resulted in sustained re-entrant arrhythmias. These arrhythmic events were prevented by ursodeoxycholic acid, which hyperpolarized MFB membrane potential by modulating potassium conductance. CONCLUSION: These results illustrate that the appearance of MFBs in the FH may contribute to arrhythmias. The above-described mechanism represents a new therapeutic approach for cardiac arrhythmias at the level of MFB.


Asunto(s)
Arritmias Cardíacas/prevención & control , Colestasis Intrahepática/complicaciones , Corazón Fetal/efectos de los fármacos , Ácido Ursodesoxicólico/farmacología , Adulto , Animales , Antiarrítmicos/administración & dosificación , Antiarrítmicos/farmacología , Arritmias Cardíacas/etiología , Células Cultivadas/citología , Células Cultivadas/efectos de los fármacos , Colestasis Intrahepática/tratamiento farmacológico , Modelos Animales de Enfermedad , Femenino , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/patología , Humanos , Técnicas In Vitro , Células Musculares/citología , Células Musculares/fisiología , Embarazo , Complicaciones del Embarazo/diagnóstico , Complicaciones del Embarazo/tratamiento farmacológico , Ratas , Ratas Wistar , Resultado del Tratamiento , Ácido Ursodesoxicólico/administración & dosificación
9.
J R Soc Interface ; 8(60): 913-25, 2011 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-21325316

RESUMEN

Cardiovascular diseases are complex pathologies that include alterations of various cell functions at the levels of intact tissue, single cells and subcellular signalling compartments. Conventional techniques to study these processes are extremely divergent and rely on a combination of individual methods, which usually provide spatially and temporally limited information on single parameters of interest. This review describes scanning ion conductance microscopy (SICM) as a novel versatile technique capable of simultaneously reporting various structural and functional parameters at nanometre resolution in living cardiovascular cells at the level of the whole tissue, single cells and at the subcellular level, to investigate the mechanisms of cardiovascular disease. SICM is a multimodal imaging technology that allows concurrent and dynamic analysis of membrane morphology and various functional parameters (cell volume, membrane potentials, cellular contraction, single ion-channel currents and some parameters of intracellular signalling) in intact living cardiovascular cells and tissues with nanometre resolution at different levels of organization (tissue, cellular and subcellular levels). Using this technique, we showed that at the tissue level, cell orientation in the inner and outer aortic arch distinguishes atheroprone and atheroprotected regions. At the cellular level, heart failure leads to a pronounced loss of T-tubules in cardiac myocytes accompanied by a reduction in Z-groove ratio. We also demonstrated the capability of SICM to measure the entire cell volume as an index of cellular hypertrophy. This method can be further combined with fluorescence to simultaneously measure cardiomyocyte contraction and intracellular calcium transients or to map subcellular localization of membrane receptors coupled to cyclic adenosine monophosphate production. The SICM pipette can be used for patch-clamp recordings of membrane potential and single channel currents. In conclusion, SICM provides a highly informative multimodal imaging platform for functional analysis of the mechanisms of cardiovascular diseases, which should facilitate identification of novel therapeutic strategies.


Asunto(s)
Aorta Torácica/fisiología , Enfermedades Cardiovasculares/patología , Corazón/fisiología , Microscopía/métodos , Miocitos Cardíacos/fisiología , Animales , Aorta Torácica/ultraestructura , Humanos , Microscopía/instrumentación , Miocitos Cardíacos/ultraestructura
10.
J Cardiovasc Electrophysiol ; 21(11): 1276-83, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20487124

RESUMEN

UNLABELLED: Effect of Stretch on Conduction and Cx43. INTRODUCTION: In disease states such as heart failure, myocardial infarction, and hypertrophy, changes in the expression and location of Connexin43 (Cx43) occur (Cx43 remodeling), and may predispose to arrhythmias. Stretch may be an important stimulus to Cx43 remodeling; however, it has only been investigated in neonatal cell cultures, which have different physiological properties than adult myocytes. We hypothesized that localized stretch in vivo causes Cx43 remodeling, with associated changes in conduction, mediated by the renin-angiotensin system (RAS). METHODS AND RESULTS: In an open-chest canine model, a device was used to stretch part of the right ventricle (RV) by 22% for 6 hours. Activation mapping using a 312-electrode array was performed before and after stretch. Regional stretch did not change longitudinal conduction velocity (post-stretch vs baseline: 51.5 ± 5.2 vs 55.3 ± 8.1 cm/s, P = 0.24, n = 11), but significantly reduced transverse conduction velocity (28.7 ± 2.5 vs 35.4 ± 5.4 cm/s, P < 0.01). It also reduced total Cx43 expression, by Western blotting, compared with nonstretched RV of the same animal (86.1 ± 32.2 vs 100 ± 19.4%, P < 0.02, n = 11). Cx43 labeling redistributed to the lateral cell borders. Stretch caused a small but significant increase in the proportion of the dephosphorylated form of Cx43 (stretch 9.95 ± 1.4% vs control 8.74 ± 1.2%, P < 0.05). Olmesartan, an angiotensin II blocker, prevented the stretch-induced changes in Cx43 levels, localization, and conduction. CONCLUSION: Myocardial stretch in vivo has opposite effects to that in neonatal myocytes in vitro. Stretch in vivo causes conduction changes associated with Cx43 remodeling that are likely caused by local stretch-induced activation of the RAS.


Asunto(s)
Conexina 43/metabolismo , Sistema de Conducción Cardíaco/fisiología , Contracción Miocárdica/fisiología , Conducción Nerviosa/fisiología , Sistema Renina-Angiotensina/fisiología , Función Ventricular Derecha/fisiología , Animales , Perros , Módulo de Elasticidad/fisiología , Regulación de la Expresión Génica/fisiología , Distribución Tisular
11.
Proc Natl Acad Sci U S A ; 106(16): 6854-9, 2009 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-19342485

RESUMEN

T-tubular invaginations of the sarcolemma of ventricular cardiomyocytes contain junctional structures functionally coupling L-type calcium channels to the sarcoplasmic reticulum calcium-release channels (the ryanodine receptors), and therefore their configuration controls the gain of calcium-induced calcium release (CICR). Studies primarily in rodent myocardium have shown the importance of T-tubular structures for calcium transient kinetics and have linked T-tubule disruption to delayed CICR. However, there is disagreement as to the nature of T-tubule changes in human heart failure. We studied isolated ventricular myocytes from patients with ischemic heart disease, idiopathic dilated cardiomyopathy, and hypertrophic obstructive cardiomyopathy and determined T-tubule structure with either the fluorescent membrane dye di-8-ANNEPs or the scanning ion conductance microscope (SICM). The SICM uses a scanning pipette to produce a topographic representation of the surface of the live cell by a non-optical method. We have also compared ventricular myocytes from a rat model of chronic heart failure after myocardial infarction. T-tubule loss, shown by both ANNEPs staining and SICM imaging, was pronounced in human myocytes from all etiologies of disease. SICM imaging showed additional changes in surface structure, with flattening and loss of Z-groove definition common to all etiologies. Rat myocytes from the chronic heart failure model also showed both T-tubule and Z-groove loss, as well as increased spark frequency and greater spark amplitude. This study confirms the loss of T-tubules as part of the phenotypic change in the failing human myocyte, but it also shows that this is part of a wider spectrum of alterations in surface morphology.


Asunto(s)
Insuficiencia Cardíaca/patología , Ventrículos Cardíacos/patología , Miocitos Cardíacos/patología , Sarcolema/patología , Animales , Calcio/metabolismo , Señalización del Calcio , Separación Celular , Enfermedad Crónica , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/fisiopatología , Ventrículos Cardíacos/fisiopatología , Humanos , Contracción Miocárdica , Infarto del Miocardio/complicaciones , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Ratas , Propiedades de Superficie
12.
Nat Methods ; 6(4): 279-81, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19252505

RESUMEN

We describe hopping mode scanning ion conductance microscopy that allows noncontact imaging of the complex three-dimensional surfaces of live cells with resolution better than 20 nm. We tested the effectiveness of this technique by imaging networks of cultured rat hippocampal neurons and mechanosensory stereocilia of mouse cochlear hair cells. The technique allowed examination of nanoscale phenomena on the surface of live cells under physiological conditions.


Asunto(s)
Células Cultivadas/ultraestructura , Microscopía de Sonda de Barrido/instrumentación , Microscopía de Sonda de Barrido/métodos , Nanotecnología/instrumentación , Nanotecnología/métodos , Animales , Conductividad Eléctrica , Diseño de Equipo , Análisis de Falla de Equipo , Aumento de la Imagen/instrumentación , Aumento de la Imagen/métodos , Iones , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
13.
Tissue Eng Part C Methods ; 14(4): 311-8, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19055357

RESUMEN

The most valuable property of stem cells (SCs) is their potential to differentiate into many or all cell types of the body. So far, monitoring SC differentiation has only been possible after cells were fixed or destroyed during sample preparation. It is, however, important to develop nondestructive methods of monitoring SCs. Scanning ion conductance microscopy (SICM) is a unique imaging technique that uses similar principles to the atomic force microscope, but with a pipette for the probe. This allows scanning of the surface of living cells noninvasively and enables measurement of cellular activities under more physiological conditions than is possible with other high-resolution microscopy techniques. We report here the novel use of the SICM for studying SCs to assess and monitor the status of SCs and various cell types differentiated from SCs.


Asunto(s)
Microscopía Electrónica de Rastreo/métodos , Células Madre/citología , Animales , Diferenciación Celular , Línea Celular , Proliferación Celular , Diseño de Equipo , Humanos , Ratones , Microscopía Confocal/métodos , Cresta Neural/patología , Neuronas/citología , Técnicas de Placa-Clamp , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Madre/ultraestructura , Propiedades de Superficie
14.
Biophys J ; 95(6): 3017-27, 2008 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-18515369

RESUMEN

Mechanosensitivity in living biological tissue is a study area of increasing importance, but investigative tools are often inadequate. We have developed a noncontact nanoscale method to apply quantified positive and negative force at defined positions to the soft responsive surface of living cells. The method uses applied hydrostatic pressure (0.1-150 kPa) through a pipette, while the pipette-sample separation is kept constant above the cell surface using ion conductance based distance feedback. This prevents any surface contact, or contamination of the pipette, allowing repeated measurements. We show that we can probe the local mechanical properties of living cells using increasing pressure, and hence measure the nanomechanical properties of the cell membrane and the underlying cytoskeleton in a variety of cells (erythrocytes, epithelium, cardiomyocytes and neurons). Because the cell surface can first be imaged without pressure, it is possible to relate the mechanical properties to the local cell topography. This method is well suited to probe the nanomechanical properties and mechanosensitivity of living cells.


Asunto(s)
Células/citología , Animales , Fenómenos Biomecánicos , Calibración , Supervivencia Celular , Células Epiteliales/citología , Eritrocitos/citología , Modelos Biológicos , Miocitos Cardíacos/citología , Neuronas/citología , Presión , Reproducibilidad de los Resultados
15.
Prog Biophys Mol Biol ; 97(2-3): 452-60, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18407323

RESUMEN

Electrical restitution in the heart is the property whereby the action potential duration and conduction velocity of a beat of altered cycle length vary according to its immediacy to the preceding basic beat--the coupling interval, usually the diastolic interval. In general, action potential duration (APD) increases with increasing coupling interval, and the relation between action potential duration and the preceding diastolic interval describes the APD restitution curve. The latter has recently been the focus of considerable interest since the steepness of the initial part of the restitution curve plays an important role in electrical stability and arrhythmogenesis. Mechanical stretch has been shown to alter APD and hence refractoriness either through stretch activated channels or by influencing calcium cycling. Such an effect on refractoriness has been proposed as a mechanism of arrhythmogenesis particularly if spatially inhomogeneities manifest within the heart. Here, we review (1) the spatial and temporal characteristics of APD restitution in humans; (2) previously reported work showing that mechanical loading differentially effects APD of interpolated beats of altered cycle length, and hence alters the slope of the APD restitution curve; and (3) evidence that inhomogeneity of APD restitution slope may be an important factor in arrhythmogenesis.


Asunto(s)
Potenciales de Acción , Retroalimentación , Sistema de Conducción Cardíaco/fisiología , Mecanotransducción Celular , Contracción Miocárdica , Humanos , Estrés Mecánico
16.
Pflugers Arch ; 456(1): 227-35, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18180951

RESUMEN

We introduce a novel high resolution scanning surface confocal microscopy technique that enables imaging of endocytic pits in apical membranes of live cells for the first time. The improved topographical resolution of the microscope together with simultaneous fluorescence confocal detection produces pairs of images of cell surfaces sufficient to identify single endocytic pits. Whilst the precise position and size of the pit is detected by the ion conductance microscope, the molecular nature of the pit, e.g. clathrin coated or caveolae, is determined by the corresponding green fluorescent protein fluorescence. Also, for the first time, we showed that flotillin 1 and 2 can be found co-localising with approximately 200-nm indentations in the cell membrane that supports involvement of this protein in endocytosis.


Asunto(s)
Caveolas/ultraestructura , Endocitosis/fisiología , Microscopía Confocal/métodos , Microscopía de Sonda de Barrido/métodos , Animales , Células COS , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Chlorocebus aethiops , Proteínas Fluorescentes Verdes , Riñón/citología , Riñón/ultraestructura , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/ultraestructura
17.
Biophys J ; 94(10): 4089-94, 2008 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-18199668

RESUMEN

We have developed a high-resolution scanning surface confocal microscopy technique capable of imaging single virus-like particles (VLPs) on the surfaces of cells topographically and by fluorescence. The technique combines recently published single-molecule-resolution ion-conductance microscopy that acquires topographical data with confocal microscopy providing simultaneous fluorescent imaging. In our experiments we have demonstrated that the cell membrane exhibits numerous submicrometer-sized surface structures that could be topographically confused with virus particles. However, simultaneous acquisition of confocal images allows the positions of fluorescently tagged particles to be identified. Using this technique, we have, for the first time, visualized single polyoma VLPs adsorbed onto the cell membrane. Observed VLPs had a mean width of 108 +/- 16 nm. The particles were randomly distributed across the cell membrane, and no specific interactions were seen with cell membrane structures such as microvilli. These experiments demonstrate the utility of this new microscope for imaging the interactions of nanoparticles with the cell surface to provide novel insights into the earliest interactions of viruses and other nanoparticles such as gene therapy vectors with the cell.


Asunto(s)
Membrana Celular/ultraestructura , Aumento de la Imagen/instrumentación , Interpretación de Imagen Asistida por Computador/métodos , Microscopía Confocal/instrumentación , Virión/ultraestructura , Animales , Células COS , Chlorocebus aethiops , Diseño de Equipo , Análisis de Falla de Equipo , Sensibilidad y Especificidad
18.
Am J Physiol Renal Physiol ; 292(6): F1734-40, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17356127

RESUMEN

Extracellular ATP initiates potent effects on sodium transport across renal epithelia through membrane-associated purinergic receptors. Dependent on the location of these receptors, ATP either inhibits or stimulates sodium reabsorption. Using A6 cells, transepithelial electrical resistance measurements, and scanning ion conductance microscopy, we have identified the purinergic receptors involved in the stimulatory action on the epithelial cell basolateral plasma membrane. Addition of the potent P2X(4) receptor agonist 2-methylthio-ATP (2MeSATP) to the basolateral side of the A6 monolayer stimulated amiloride-sensitive sodium conductance and produced similar cell morphological changes to those found with ATPgammaS, aldosterone, or hypotonic stress. The agonist potency order determined by sodium conductance changes of the monolayer was: 2MeSATP >or= ATPgammaS > CTP, a similar agonist potency profile to that of cloned P2X(4) receptors but with higher sensitivity for beta, gamma-methylene-ATP and alpha,beta-methylene-ATP. We further demonstrated that the ATP effect on sodium transport was potentiated by ivermectin, not blocked by suramin and PPADS, enhanced by Zn(2+) but not by Cu(2+), and significantly reduced but not totally inhibited by brilliant blue G. These results led us to conclude that basolateral P2X(4)-like receptors were involved. We suggest that there is a reciprocal purinergic system acting both at a basolateral and apical location for control of Na(+) transport. This requires a mechanism within the cell that leads to either basolateral or apical ATP release to regulate renal tubular function.


Asunto(s)
Adenosina Trifosfato/fisiología , Riñón/metabolismo , Receptores Purinérgicos P2/fisiología , Canales de Sodio/metabolismo , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Aldosterona/fisiología , Amilorida/farmacología , Animales , Citidina Trifosfato/farmacología , Diuréticos/farmacología , Impedancia Eléctrica , Epitelio/efectos de los fármacos , Epitelio/metabolismo , Ivermectina/farmacología , Riñón/efectos de los fármacos , Microscopía de Sonda de Barrido , Agonistas del Receptor Purinérgico P2 , Antagonistas del Receptor Purinérgico P2 , Receptores Purinérgicos P2X4 , Canales de Sodio/efectos de los fármacos , Tionucleótidos/metabolismo , Xenopus laevis
19.
J Neurosci Methods ; 159(1): 26-34, 2007 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-16887195

RESUMEN

Mechanosensitive ion channels convert external mechanical force into electrical and chemical signals in cells, but their physiological function in different tissues is not clearly understood. One reason for this is that there is as yet no satisfactory physiological method to stimulate these channels in living cells. Using the nanopipette-probe of the Scanning Ion Conductance Microscope (SICM), we have developed a new technique to apply local mechanical stimulus to living cells to an area of about 0.385 microm2, determined by the pipette diameter. Our method prevents any physical contact and damage to the cell membrane by use of a pressure jet applied via the nanopipette. The study used whole-cell patch-clamp recordings and measurements of intracellular Ca2+ concentration to validate the application of the mechanical stimulation protocols in human and rat dorsal root ganglia (DRG) sensory neurons. We were able, for the first time, to produce a non-contact, controlled mechanical stimulation on living neurites of human DRG neurons. Our methods will enable the identification and characterisation of compounds being developed for the treatment of clinical mechanical hypersensitivity states.


Asunto(s)
Ganglios Espinales/fisiología , Neuronas Aferentes/fisiología , Estimulación Física/instrumentación , Adulto , Animales , Señalización del Calcio/fisiología , Membrana Celular/fisiología , Membrana Celular/ultraestructura , Células Cultivadas , Dendritas/fisiología , Electrofisiología , Ganglios Espinales/citología , Humanos , Técnicas In Vitro , Masculino , Microscopía Electrónica de Rastreo , Microscopía Fluorescente , Neuritas/fisiología , Estimulación Física/métodos , Terminales Presinápticos/fisiología , Ratas , Ratas Wistar
20.
Ann N Y Acad Sci ; 1080: 282-300, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17132790

RESUMEN

This review covers aspects of the cardiac mechanotransduction field at different levels, and advocates the possibility that mechanoelectro-chemical transduction forms part of a network of mechanically linked integration in heart-mechanically mediated integration (MMI). It assembles evidence and observations in the literature to promote this hypothesis. Mechanical components can provide the bond between interactions at molecular, cellular, and macro levels to enable the integration. Stretch-activated channels (SACs) exist in the heart, but stresses and strains can affect other membrane channels or receptors. A cellular mechanical change can thus promote several ionic or downstream changes. Cell signal cascades have been implicated and can affect membrane electrophysiology. MMI could shape intracellular and downstream signals using the cytoskeleton and intracellular Ca(2+). MMI also spans other regulatory systems and processes such as the autonomic nervous system (ANS) and operates throughout the whole heart as an integrative system. Finally, supporting the hypothesis, if elements of the normal integration become deranged it contributes to cardiovascular disease and, potentially, lethal arrhythmia.


Asunto(s)
Corazón/fisiología , Mecanotransducción Celular , Animales , Calcio/metabolismo , Gasto Cardíaco Bajo/metabolismo , Gasto Cardíaco Bajo/fisiopatología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...