Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(2): e0297858, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38381714

RESUMEN

The influence of human gut microbiota on health and disease is now commonly appreciated. Therefore, it is not surprising that microbiome research has found interest in the sports community, hoping to improve health and optimize performance. Comparative studies found new species or pathways that were more enriched in elites than sedentary controls. In addition, sport-specific and performance-level-specific microbiome features have been identified. However, the results remain inconclusive and indicate the need for further assessment. In this case-control study, we tested two athletic populations (i.e. strength athletes, endurance athletes) and a non-athletic, but physically active, control group across two acute exercise bouts, separated by a 2-week period, that measured explosive and high intensity fitness level (repeated 30-s all-out Wingate test (WT)) and cardiorespiratory fitness level (Bruce Treadmill Test). While we did not identify any group differences in alpha and beta diversity or significant differential abundance of microbiome components at baseline, one-third of the species identified were unique to each group. Longitudinal sample (pre- and post-exercise) analysis revealed an abundance of Alistipes communis in the strength group during the WT and 88 species with notable between-group differences during the Bruce Test. SparCC recognized Bifidobacterium longum and Bifidobacterium adolescentis, short-chain fatty acid producers with probiotic properties, species strongly associated with VO2max. Ultimately, we identified several taxa with different baseline abundances and longitudinal changes when comparing individuals based on their VO2max, average power, and maximal power parameters. Our results confirmed that the health status of individuals are consistent with assumptions about microbiome health. Furthermore, our findings indicate that microbiome features are associated with better performance previously identified in elite athletes.


Asunto(s)
Rendimiento Atlético , Capacidad Cardiovascular , Microbioma Gastrointestinal , Deportes , Humanos , Estudios de Casos y Controles , Ejercicio Físico
2.
Bioinform Adv ; 4(1): vbad187, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38239846

RESUMEN

The Polish Bioinformatic Society (PTBI) Symposium convenes annually at leading Polish Universities, and in 2023, the Silesian University of Technology hosted participants from all over the world. The 15th PTBI Symposium, spanning a 3-day duration and divided into four scientific sessions, gathered around 100 participants and centered on research related to machine learning in biomedicine, RNA structure algorithms, next-generation sequencing methods, and microbiome analysis but was not limited to only those topics. The meeting also recognized outstanding research conducted by young scientists by awarding the best poster and best talk. Finally, the awards for the best PhD, MSc, and BSc thesis in bioinformatics defended in Poland were given. This report summarizes the key highlights and outcomes of the meeting.

3.
Sci Rep ; 13(1): 19976, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37968441

RESUMEN

Mycoparasitism is a key feature of Trichoderma (Hypocreales, Ascomycota) biocontrol agents. Recent studies of intracellular signal transduction pathways of the potent mycoparasite Trichoderma atroviride revealed the involvement of Tmk1, a mitogen-activated protein kinase (MAPK), in triggering the mycoparasitic response. We previously showed that mutants missing Tmk1 exhibit reduced mycoparasitic activity against several plant pathogenic fungi. In this study, we identified the most robustly regulated targets that were governed by Tmk1 during mycoparasitism using transcriptome and proteome profiling. Tmk1 mainly exerts a stimulating function for T. atroviride during its mycoparasitic interaction with the fungal plant pathogen Rhizoctonia solani, as reflected by 89% of strongly differently responding genes in the ∆tmk1 mutant compared to the wild type. Specifically, 54% of these genes showed strong downregulation in the response with a deletion of the tmk1 gene, whereas in the wild type the same genes were strongly upregulated during the interaction with the fungal host. These included the gene encoding the mycoparasitism-related proteinase Prb1; genes involved in signal transduction pathways such as a candidate coding for a conserved 14-3-3 protein, and a gene coding for Tmk2, the T. atroviride cell-wall integrity MAP kinase; genes encoding a specific siderophore synthetase, and multiple FAD-dependent oxidoreductases and aminotransferases. Due to the phosphorylating activity of Tmk1, different (phospho-)proteomics approaches were applied and identified proteins associated with cellular metabolism, energy production, protein synthesis and fate, and cell organization. Members of FAD- and NAD/NADP-binding-domain proteins, vesicular trafficking of molecules between cellular organelles, fungal translational, as well as protein folding apparatus were among others found to be phosphorylated by Tmk1 during mycoparasitism. Outstanding downregulation in the response of the ∆tmk1 mutant to the fungal host compared to the wild type at both the transcriptome and the proteome levels was observed for nitrilase, indicating that its defense and detoxification functions might be greatly dependent on Tmk1 during T. atroviride mycoparasitism. An intersection network analysis between the identified transcripts and proteins revealed a strong involvement of Tmk1 in molecular functions with GTPase and oxidoreductase activity. These data suggest that during T. atroviride mycoparasitism this MAPK mainly governs processes regulating cell responses to extracellular signals and those involved in reactive oxygen stress.


Asunto(s)
Hypocreales , Trichoderma , Proteoma/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Transducción de Señal , Hypocreales/metabolismo , Trichoderma/metabolismo , Regulación Fúngica de la Expresión Génica
4.
Front Immunol ; 14: 1123155, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37287972

RESUMEN

Introduction: Natural killer (NK) cells plays a pivotal role in the control of viral infections, and their function depend on the balance between their activating and inhibitory receptors. The immune dysregulation observed in COVID-19 patients was previously associated with downregulation of NK cell numbers and function, yet the mechanism of inhibition of NK cell functions and the interplay between infected cells and NK cells remain largely unknown. Methods: In this study we show that SARS-CoV-2 infection of airway epithelial cells can directly influence NK cell phenotype and functions in the infection microenvironment. NK cells were co-cultured with SARS-CoV-2 infected epithelial cells, in a direct contact with A549ACE2/TMPRSS2 cell line or in a microenvironment of the infection in a 3D ex vivo human airway epithelium (HAE) model and NK cell surface expression of a set of most important receptors (CD16, NKG2D, NKp46, DNAM-1, NKG2C, CD161, NKG2A, TIM-3, TIGIT, and PD-1) was analyzed. Results: We observed a selective, in both utilized experimental models, significant downregulation the proportion of CD161 (NKR-P1A or KLRB1) expressing NK cells, and its expression level, which was followed by a significant impairment of NK cells cytotoxicity level against K562 cells. What is more, we confirmed that SARS-CoV-2 infection upregulates the expression of the ligand for CD161 receptor, lectin-like transcript 1 (LLT1, CLEC2D or OCIL), on infected epithelial cells. LLT1 protein can be also detected not only in supernatants of SARS-CoV-2 infected A549ACE2/TMPRSS2 cells and HAE basolateral medium, but also in serum of COVID-19 patients. Finally, we proved that soluble LLT1 protein treatment of NK cells significantly reduces i) the proportion of CD161+ NK cells, ii) the ability of NK cells to control SARS-CoV-2 infection in A549ACE2/TMPRSS2 cells and iii) the production of granzyme B by NK cells and their cytotoxicity capacity, yet not degranulation level. Conclusion: We propose a novel mechanism of SARS-CoV-2 inhibition of NK cell functions via activation of the LLT1-CD161 axis.


Asunto(s)
COVID-19 , Receptores de Superficie Celular , Humanos , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/metabolismo , Células Asesinas Naturales , Receptores de Superficie Celular/metabolismo , SARS-CoV-2/metabolismo
6.
Sci Total Environ ; 870: 161887, 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-36731550

RESUMEN

The endophytic Basidiomycete Sporobolomyces ruberrimus protects its host Arabidopsis arenosa against metal toxicity. Plants inoculated with the fungus yielded more biomass and exhibited significantly fewer stress symptoms in medium mimicking mine dump conditions (medium supplemented with excess of Fe, Zn and Cd). Aside from fine-tuning plant metal homeostasis, the fungus was capable of precipitating Fe in the medium, most likely limiting host exposure to metal toxicity. The precipitated residue was identified by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), X-Ray Diffraction (XRD) and electron microscopy (SEM/TEM) with energy dispersive X-Ray analysis (EDX/SAED) techniques. The performed analyses revealed that the fungus transforms iron into amorphous (oxy)hydroxides and phosphates and immobilizes them in the form of a precipitate changing Fe behaviour in the MSR medium. Moreover, the complexation of free Fe ions by fungi could be obtained by biomolecules such as lipids, proteins, or biosynthesized redox-active molecules.


Asunto(s)
Arabidopsis , Basidiomycota , Hierro/toxicidad , Hierro/química , Metales , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
8.
iScience ; 25(11): 104993, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36299999

RESUMEN

The MetaSUB Consortium, founded in 2015, is a global consortium with an interdisciplinary team of clinicians, scientists, bioinformaticians, engineers, and designers, with members from more than 100 countries across the globe. This network has continually collected samples from urban and rural sites including subways and transit systems, sewage systems, hospitals, and other environmental sampling. These collections have been ongoing since 2015 and have continued when possible, even throughout the COVID-19 pandemic. The consortium has optimized their workflow for the collection, isolation, and sequencing of DNA and RNA collected from these various sites and processing them for metagenomics analysis, including the identification of SARS-CoV-2 and its variants. Here, the Consortium describes its foundations, and its ongoing work to expand on this network and to focus its scope on the mapping, annotation, and prediction of emerging pathogens, mapping microbial evolution and antibiotic resistance, and the discovery of novel organisms and biosynthetic gene clusters.

9.
Gigascience ; 122022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-37496156

RESUMEN

Conflicts and natural disasters affect entire populations of the countries involved and, in addition to the thousands of lives destroyed, have a substantial negative impact on the scientific advances these countries provide. The unprovoked invasion of Ukraine by Russia, the devastating earthquake in Turkey and Syria, and the ongoing conflicts in the Middle East are just a few examples. Millions of people have been killed or displaced, their futures uncertain. These events have resulted in extensive infrastructure collapse, with loss of electricity, transportation, and access to services. Schools, universities, and research centers have been destroyed along with decades' worth of data, samples, and findings. Scholars in disaster areas face short- and long-term problems in terms of what they can accomplish now for obtaining grants and for employment in the long run. In our interconnected world, conflicts and disasters are no longer a local problem but have wide-ranging impacts on the entire world, both now and in the future. Here, we focus on the current and ongoing impact of war on the scientific community within Ukraine and from this draw lessons that can be applied to all affected countries where scientists at risk are facing hardship. We present and classify examples of effective and feasible mechanisms used to support researchers in countries facing hardship and discuss how these can be implemented with help from the international scientific community and what more is desperately needed. Reaching out, providing accessible training opportunities, and developing collaborations should increase inclusion and connectivity, support scientific advancements within affected communities, and expedite postwar and disaster recovery.


Asunto(s)
Conflictos Armados , Ciencia , Humanos , Ucrania
11.
Genome Biol ; 22(1): 332, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34872606

RESUMEN

BACKGROUND: Cytosine modifications in DNA such as 5-methylcytosine (5mC) underlie a broad range of developmental processes, maintain cellular lineage specification, and can define or stratify types of cancer and other diseases. However, the wide variety of approaches available to interrogate these modifications has created a need for harmonized materials, methods, and rigorous benchmarking to improve genome-wide methylome sequencing applications in clinical and basic research. Here, we present a multi-platform assessment and cross-validated resource for epigenetics research from the FDA's Epigenomics Quality Control Group. RESULTS: Each sample is processed in multiple replicates by three whole-genome bisulfite sequencing (WGBS) protocols (TruSeq DNA methylation, Accel-NGS MethylSeq, and SPLAT), oxidative bisulfite sequencing (TrueMethyl), enzymatic deamination method (EMSeq), targeted methylation sequencing (Illumina Methyl Capture EPIC), single-molecule long-read nanopore sequencing from Oxford Nanopore Technologies, and 850k Illumina methylation arrays. After rigorous quality assessment and comparison to Illumina EPIC methylation microarrays and testing on a range of algorithms (Bismark, BitmapperBS, bwa-meth, and BitMapperBS), we find overall high concordance between assays, but also differences in efficiency of read mapping, CpG capture, coverage, and platform performance, and variable performance across 26 microarray normalization algorithms. CONCLUSIONS: The data provided herein can guide the use of these DNA reference materials in epigenomics research, as well as provide best practices for experimental design in future studies. By leveraging seven human cell lines that are designated as publicly available reference materials, these data can be used as a baseline to advance epigenomics research.


Asunto(s)
Epigénesis Genética , Epigenómica/métodos , Control de Calidad , 5-Metilcitosina , Algoritmos , Islas de CpG , ADN/genética , Metilación de ADN , Epigenoma , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Alineación de Secuencia , Análisis de Secuencia de ADN/métodos , Sulfitos , Secuenciación Completa del Genoma/métodos
12.
Cells ; 10(11)2021 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-34831382

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the recently emerged virus responsible for the COVID-19 pandemic. Clinical presentation can range from asymptomatic disease and mild respiratory tract infection to severe disease with lung injury, multiorgan failure, and death. SARS-CoV-2 is the third animal coronavirus to emerge in humans in the 21st century, and coronaviruses appear to possess a unique ability to cross borders between species and infect a wide range of organisms. This is somewhat surprising as, except for the requirement of host cell receptors, cell-pathogen interactions are usually species-specific. Insights into these host-virus interactions will provide a deeper understanding of the process of SARS-CoV-2 infection and provide a means for the design and development of antiviral agents. In this study, we describe a complex analysis of SARS-CoV-2 infection using a genome-wide CRISPR-Cas9 knock-out system in HeLa cells overexpressing entry receptor angiotensin-converting enzyme 2 (ACE2). This platform allows for the identification of factors required for viral replication. This study was designed to include a high number of replicates (48 replicates; 16 biological repeats with 3 technical replicates each) to prevent data instability, remove sources of bias, and allow multifactorial bioinformatic analyses in order to study the resulting interaction network. The results obtained provide an interesting insight into the replication mechanisms of SARS-CoV-2.


Asunto(s)
SARS-CoV-2/fisiología , Replicación Viral , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Sistemas CRISPR-Cas , Biología Computacional , Genoma Humano/genética , Células HeLa , Interacciones Huésped-Patógeno , Humanos , SARS-CoV-2/patogenicidad
14.
PLoS Pathog ; 16(12): e1008959, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33301543

RESUMEN

SARS-CoV-2 genome annotation revealed the presence of 10 open reading frames (ORFs), of which the last one (ORF10) is positioned downstream of the N gene. It is a hypothetical gene, which was speculated to encode a 38 aa protein. This hypothetical protein does not share sequence similarity with any other known protein and cannot be associated with a function. While the role of this ORF10 was proposed, there is growing evidence showing that the ORF10 is not a coding region. Here, we identified SARS-CoV-2 variants in which the ORF10 gene was prematurely terminated. The disease was not attenuated, and the transmissibility between humans was maintained. Also, in vitro, the strains replicated similarly to the related viruses with the intact ORF10. Altogether, based on clinical observation and laboratory analyses, it appears that the ORF10 protein is not essential in humans. This observation further proves that the ORF10 should not be treated as the protein-coding gene, and the genome annotations should be amended.


Asunto(s)
COVID-19/virología , Genoma Viral , Mutación , Sistemas de Lectura Abierta/genética , SARS-CoV-2/genética , Proteínas Virales/genética , Replicación Viral , Adulto , COVID-19/epidemiología , COVID-19/genética , Codón sin Sentido , Femenino , Humanos , Técnicas In Vitro , Masculino , Persona de Mediana Edad , Polonia/epidemiología , SARS-CoV-2/aislamiento & purificación , Proteínas Virales/metabolismo
15.
Nucleic Acids Res ; 48(15): 8320-8331, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32749457

RESUMEN

The rat is an important model organism in biomedical research for studying human disease mechanisms and treatments, but its annotated transcriptome is far from complete. We constructed a Rat Transcriptome Re-annotation named RTR using RNA-seq data from 320 samples in 11 different organs generated by the SEQC consortium. Totally, there are 52 807 genes and 114 152 transcripts in RTR. Transcribed regions and exons in RTR account for ∼42% and ∼6.5% of the genome, respectively. Of all 73 074 newly annotated transcripts in RTR, 34 213 were annotated as high confident coding transcripts and 24 728 as high confident long noncoding transcripts. Different tissues rather than different stages have a significant influence on the expression patterns of transcripts. We also found that 11 715 genes and 15 852 transcripts were expressed in all 11 tissues and that 849 house-keeping genes expressed different isoforms among tissues. This comprehensive transcriptome is freely available at http://www.unimd.org/rtr/. Our new rat transcriptome provides essential reference for genetics and gene expression studies in rat disease and toxicity models.


Asunto(s)
Genoma/genética , Anotación de Secuencia Molecular , RNA-Seq/métodos , Transcriptoma/genética , Empalme Alternativo/genética , Animales , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ratas , Secuenciación del Exoma
16.
Biomed Pharmacother ; 128: 110296, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32480226

RESUMEN

The recent outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has created a global crisis, necessitating the identification of genetic factors that modulate the risk of disorder or its severity. The current data about the role of genetic risk factors in determination of rate of SARS-CoV-2 infection in each ethnic group and the severity of disorder is limited. Moreover, several confounding parameters such as the number of tests performed in each country, the structure of the population especially the age distribution, the presence of risk factors for respiratory disorders such as smoking and other environmental factors might be involved in the variability in disease course or prevalence of infection among different ethnic groups. However, assessment of the role of genetic variants in determination of the course of other respiratory infections might help in recognition of possible candidate for further analysis in patients affected with SARS-CoV-2. In the current review, we summarize the data showing the association between genomic variants and risk of acute respiratory distress syndrome, respiratory infections or severity of these conditions with an especial focus on the SARS-CoV-2.


Asunto(s)
Infecciones por Coronavirus , Pandemias , Neumonía Viral , Infecciones del Sistema Respiratorio/genética , Betacoronavirus/aislamiento & purificación , COVID-19 , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/fisiopatología , Predisposición Genética a la Enfermedad , Variación Genética , Humanos , Neumonía Viral/epidemiología , Neumonía Viral/genética , Neumonía Viral/fisiopatología , Polimorfismo de Nucleótido Simple , Infecciones del Sistema Respiratorio/fisiopatología , SARS-CoV-2 , Índice de Severidad de la Enfermedad
17.
Vascul Pharmacol ; 130: 106680, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32423553

RESUMEN

Angiotensin-converting enzyme (ACE) and its homologue, ACE2, have been mostly associated with hypertensive disorder. However, recent pandemia of SARS-CoV-2 has put these proteins at the center of attention, as this virus has been shown to exploit ACE2 protein to enter cells. Clear difference in the response of affected patients to this virus has urged researchers to find the molecular basis and pathophysiology of the cell response to this virus. Different levels of expression and function of ACE proteins, underlying disorders, consumption of certain medications and the existence of certain genomic variants within ACE genes are possible explanations for the observed difference in the response of individuals to the SARS-CoV-2 infection. In the current review, we discuss the putative mechanisms for this observation.


Asunto(s)
Infecciones por Coronavirus/enzimología , Peptidil-Dipeptidasa A/biosíntesis , Neumonía Viral/enzimología , COVID-19 , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/patología , Humanos , Pandemias , Peptidil-Dipeptidasa A/sangre , Peptidil-Dipeptidasa A/genética , Neumonía Viral/genética , Neumonía Viral/patología
18.
Cytokine ; 133: 155143, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32460144

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic in early 2020. The infection has been associated with a wide range of clinical symptoms. In the severely affected patients, it has caused dysregulation of immune responses including over-secretion of inflammatory cytokines and imbalances in the proportion of naïve helper T cells, memory helper T cells and regulatory T cells. Identification of the underlying mechanism of such aberrant function of immune system would help in the prediction of disease course and selection of susceptible patients for more intensive cares. In the current review, we summarize the results of studies which reported alterations in cytokine levels and immune cell functions in patients affected with SARS-CoV-2 and related viruses.


Asunto(s)
Infecciones por Coronavirus/inmunología , Citocinas/metabolismo , Neumonía Viral/inmunología , Síndrome Respiratorio Agudo Grave/inmunología , Animales , Betacoronavirus , COVID-19 , Infecciones por Coronavirus/metabolismo , Progresión de la Enfermedad , Susceptibilidad a Enfermedades/inmunología , Susceptibilidad a Enfermedades/patología , Humanos , Gripe Humana/inmunología , Gripe Humana/metabolismo , Coronavirus del Síndrome Respiratorio de Oriente Medio , Pandemias , Neumonía Viral/metabolismo , SARS-CoV-2 , Síndrome Respiratorio Agudo Grave/metabolismo , Síndrome Respiratorio Agudo Grave/virología , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Reguladores/inmunología
19.
Sci China Life Sci ; 62(7): 937-946, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31124003

RESUMEN

RNA sequencing (RNA-seq) has greatly facilitated the exploring of transcriptome landscape for diverse organisms. However, transcriptome reconstruction is still challenging due to various limitations of current tools and sequencing technologies. Here, we introduce an efficient tool, QuaPra (Quadratic Programming combined with Apriori), for accurate transcriptome assembly and quantification. QuaPra could detect at least 26.5% more low abundance (0.1-1 FPKM) transcripts with over 2.1% increase of sensitivity and precision on simulated data compared to other currently popular tools. Moreover, around one-quarter more known transcripts were correctly assembled by QuaPra than other assemblers on real sequencing data. QuaPra is freely available at https://doi.org/www.megabionet.org/QuaPra/ .


Asunto(s)
Análisis de Secuencia de ARN/métodos , Algoritmos , Simulación por Computador , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Internet , Programas Informáticos , Transcripción Genética , Transcriptoma/genética
20.
Sci Rep ; 8(1): 12064, 2018 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-30104659

RESUMEN

Mycoparasites, e.g. fungi feeding on other fungi, are prominent within the genus Trichoderma and represent a promising alternative to chemical fungicides for plant disease control. We previously showed that the seven-transmembrane receptor Gpr1 regulates mycelial growth and asexual development and governs mycoparasitism-related processes in Trichoderma atroviride. We now describe the identification of genes being targeted by Gpr1 under mycoparasitic conditions. The identified gene set includes a candidate, sfp2, encoding a protein of the fungal-specific Sur7 superfamily, whose upregulation in T. atroviride upon interaction with a fungal prey is dependent on Gpr1. Sur7 family proteins are typical residents of membrane microdomains such as the membrane compartment of Can1 (MCC)/eisosome in yeast. We found that GFP-labeled Gpr1 and Sfp2 proteins show partly overlapping localization patterns in T. atroviride hyphae, which may point to shared functions and potential interaction during signal perception and endocytosis. Deletion of sfp2 caused heavily altered colony morphology, defects in polarized growth, cell wall integrity and endocytosis, and significantly reduced mycoparasitic activity, whereas sfp2 overexpression enhanced full overgrowth and killing of the prey. Transcriptional activation of a chitinase specific for hyphal growth and network formation and strong downregulation of chitin synthase-encoding genes were observed in Δsfp2. Taken together, these findings imply crucial functions of Sfp2 in hyphal morphogenesis of T. atroviride and its interaction with prey fungi.


Asunto(s)
Pared Celular/metabolismo , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Hifa/crecimiento & desarrollo , Trichoderma/metabolismo , Quitina Sintasa/genética , Quitina Sintasa/metabolismo , Quitinasas/genética , Quitinasas/metabolismo , Regulación hacia Abajo , Proteínas Fúngicas/genética , Perfilación de la Expresión Génica , Hifa/genética , Hifa/metabolismo , Morfogénesis , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Receptores Acoplados a Proteínas G/metabolismo , Rhizoctonia , Transducción de Señal , Activación Transcripcional , Trichoderma/genética , Trichoderma/crecimiento & desarrollo , Trichoderma/patogenicidad , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...