Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Respir Res ; 25(1): 106, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38419014

RESUMEN

BACKGROUND: Small airways disease (SAD) is a major cause of airflow obstruction in COPD patients and has been identified as a precursor to emphysema. Although the amount of SAD in the lungs can be quantified using our Parametric Response Mapping (PRM) approach, the full breadth of this readout as a measure of emphysema and COPD progression has yet to be explored. We evaluated topological features of PRM-derived normal parenchyma and SAD as surrogates of emphysema and predictors of spirometric decline. METHODS: PRM metrics of normal lung (PRMNorm) and functional SAD (PRMfSAD) were generated from CT scans collected as part of the COPDGene study (n = 8956). Volume density (V) and Euler-Poincaré Characteristic (χ) image maps, measures of the extent and coalescence of pocket formations (i.e., topologies), respectively, were determined for both PRMNorm and PRMfSAD. Association with COPD severity, emphysema, and spirometric measures were assessed via multivariable regression models. Readouts were evaluated as inputs for predicting FEV1 decline using a machine learning model. RESULTS: Multivariable cross-sectional analysis of COPD subjects showed that V and χ measures for PRMfSAD and PRMNorm were independently associated with the amount of emphysema. Readouts χfSAD (ß of 0.106, p < 0.001) and VfSAD (ß of 0.065, p = 0.004) were also independently associated with FEV1% predicted. The machine learning model using PRM topologies as inputs predicted FEV1 decline over five years with an AUC of 0.69. CONCLUSIONS: We demonstrated that V and χ of fSAD and Norm have independent value when associated with lung function and emphysema. In addition, we demonstrated that these readouts are predictive of spirometric decline when used as inputs in a ML model. Our topological PRM approach using PRMfSAD and PRMNorm may show promise as an early indicator of emphysema onset and COPD progression.


Asunto(s)
Enfisema , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Humanos , Estudios Transversales , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Volumen Espiratorio Forzado/fisiología
2.
Am J Respir Crit Care Med ; 209(10): 1181-1182, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38315965

Asunto(s)
Humanos , Masculino , Femenino
3.
Chronic Obstr Pulm Dis ; 11(1): 101-105, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-37963303

RESUMEN

Introduction: In 2019, the Beta-Blockers for the Prevention of Acute Exacerbations of Chronic Obstructive Pulmonary Disease study (BLOCK-COPD) evaluated the effect of metoprolol on exacerbation risk and mortality in a COPD population without indications for beta-blocker use. We hypothesized that an imaging metric of coronary artery disease (CAD), the coronary artery calcium (CAC) score, would predict exacerbation risk and identify a differential response to metoprolol treatment. Methods: The study population includes participants in the BLOCK-COPD study from multiple study sites. Participants underwent clinically indicated thoracic computed tomography (CT) scans ± 12 months from enrollment. The Weston scoring system quantified CAC. Adjusted Cox proportional hazards models evaluated for associations between CAC and time to exacerbation. Results: Data is included for 109 participants. The mean CAC score was 5.1±3.7, and 92 participants (84%) had CAC scores greater than 0. Over a median (interquartile range) follow-up time of 350 (280 to 352) days, there were 61 mild exacerbations and 19 severe/very severe exacerbations. No associations were found between exacerbations of any severity and CAC>0 or total CAC. Associations were observed between total CAC and CAC>0 in the left circumflex (LCx) and time to exacerbation of any severity (adjusted hazard ratio [aHR]=1.39, confidence interval [CI]: 1.08-1.79, p=0.01) and (aHR=1.96, 95% CI: 1.04-3.70, p=0.04), respectively. Conclusions: CAD is a prevalent comorbidity in COPD accounting for significant mortality. Our study confirms the high prevalence of CAD using the CAC score; however, we did not discover an association between CAC and exacerbation risk. We did find novel associations between CAC in the LCx and exacerbation risk which warrant further investigation in larger cohorts.

4.
Acad Radiol ; 31(3): 1148-1159, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37661554

RESUMEN

RATIONALE AND OBJECTIVES: Small airways disease (SAD) and emphysema are significant components of chronic obstructive pulmonary disease (COPD), a heterogenous disease where predicting progression is difficult. SAD, a principal cause of airflow obstruction in mild COPD, has been identified as a precursor to emphysema. Parametric Response Mapping (PRM) of chest computed tomography (CT) can help distinguish SAD from emphysema. Specifically, topologic PRM can define local patterns of both diseases to characterize how and in whom COPD progresses. We aimed to determine if distribution of CT-based PRM of functional SAD (fSAD) is associated with emphysema progression. MATERIALS AND METHODS: We analyzed paired inspiratory-expiratory chest CT scans at baseline and 5-year follow up in 1495 COPDGene subjects using topological analyses of PRM classifications. By spatially aligning temporal scans, we mapped local emphysema at year five to baseline lobar PRM-derived topological readouts. K-means clustering was applied to all observations. Subjects were subtyped based on predominant PRM cluster assignments and assessed using non-parametric statistical tests to determine differences in PRM values, pulmonary function metrics, and clinical measures. RESULTS: We identified distinct lobar imaging patterns and classified subjects into three radiologic subtypes: emphysema-dominant (ED), fSAD-dominant (FD), and fSAD-transition (FT: transition from healthy lung to fSAD). Relative to year five emphysema, FT showed rapid local emphysema progression (-57.5% ± 1.1) compared to FD (-49.9% ± 0.5) and ED (-33.1% ± 0.4). FT consisted primarily of at-risk subjects (roughly 60%) with normal spirometry. CONCLUSION: The FT subtype of COPD may allow earlier identification of individuals without spirometrically-defined COPD at-risk for developing emphysema.


Asunto(s)
Enfisema , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Humanos , Enfisema Pulmonar/diagnóstico por imagen , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos
5.
Ann Am Thorac Soc ; 21(3): 421-427, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37796613

RESUMEN

Rationale: Acute exacerbations of chronic obstructive pulmonary disease (AE-COPD) are detrimental events in the natural history of COPD, but the risk factors associated with future exacerbations in the absence of a history of recent exacerbations are not fully understood. Objectives: To identify risk factors for COPD exacerbations among participants in the Genetic Epidemiology of COPD Study (COPDGene) without a history of exacerbation in the previous year. Methods: We identified participants with a smoking history enrolled in COPDGene who had COPD (defined as forced expiratory volume in 1 second [FEV1]/forced vital capacity < 0.70), no exacerbation in the year before their second study site visit, and who completed at least one longitudinal follow-up questionnaire in the following 36 months. We used univariable and multivariable zero-inflated negative binomial regression models to identify risk factors associated with increased rates of exacerbation. Each risk factor's regression coefficient (ß) was rounded to the nearest 0.25 and incorporated into a graduated risk score. Results: Among the 1,528 participants with a smoking history and COPD enrolled in COPDGene without exacerbation in the year before their second study site visit, 508 participants (33.2%) had at least one moderate or severe exacerbation in the 36 months studied. Gastroesophageal reflux disease, chronic bronchitis, high symptom burden (as measured by Modified Medical Research Council Dyspnea Scale and COPD Assessment Test), and lower FEV1% predicted were associated with an increased risk of exacerbation. Each 1-point increase in our graduated risk score was associated with a 25-30% increase in exacerbation rate in the 36 months studied. Conclusions: In patients with COPD without a recent history of exacerbations, gastroesophageal reflux disease, chronic bronchitis, high symptom burden, and lower lung function are associated with increased risk of future exacerbation using a simple risk score that can be used in clinical practice.


Asunto(s)
Bronquitis Crónica , Reflujo Gastroesofágico , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Bronquitis Crónica/epidemiología , Factores de Riesgo , Reflujo Gastroesofágico/complicaciones , Reflujo Gastroesofágico/epidemiología , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Volumen Espiratorio Forzado
6.
Respir Res ; 24(1): 265, 2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37925418

RESUMEN

BACKGROUND: Quantitative interstitial abnormalities (QIA) are an automated computed tomography (CT) finding of early parenchymal lung disease, associated with worse lung function, reduced exercise capacity, increased respiratory symptoms, and death. The metabolomic perturbations associated with QIA are not well known. We sought to identify plasma metabolites associated with QIA in smokers. We also sought to identify shared and differentiating metabolomics features between QIA and emphysema, another smoking-related advanced radiographic abnormality. METHODS: In 928 former and current smokers in the Genetic Epidemiology of COPD cohort, we measured QIA and emphysema using an automated local density histogram method and generated metabolite profiles from plasma samples using liquid chromatography-mass spectrometry (Metabolon). We assessed the associations between metabolite levels and QIA using multivariable linear regression models adjusted for age, sex, body mass index, smoking status, pack-years, and inhaled corticosteroid use, at a Benjamini-Hochberg False Discovery Rate p-value of ≤ 0.05. Using multinomial regression models adjusted for these covariates, we assessed the associations between metabolite levels and the following CT phenotypes: QIA-predominant, emphysema-predominant, combined-predominant, and neither- predominant. Pathway enrichment analyses were performed using MetaboAnalyst. RESULTS: We found 85 metabolites significantly associated with QIA, with overrepresentation of the nicotinate and nicotinamide, histidine, starch and sucrose, pyrimidine, phosphatidylcholine, lysophospholipid, and sphingomyelin pathways. These included metabolites involved in inflammation and immune response, extracellular matrix remodeling, surfactant, and muscle cachexia. There were 75 metabolites significantly different between QIA-predominant and emphysema-predominant phenotypes, with overrepresentation of the phosphatidylethanolamine, nicotinate and nicotinamide, aminoacyl-tRNA, arginine, proline, alanine, aspartate, and glutamate pathways. CONCLUSIONS: Metabolomic correlates may lend insight to the biologic perturbations and pathways that underlie clinically meaningful quantitative CT measurements like QIA in smokers.


Asunto(s)
Enfisema , Niacina , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Humanos , Fumadores , Pulmón , Enfisema Pulmonar/diagnóstico por imagen , Enfisema Pulmonar/epidemiología , Niacinamida , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Enfermedad Pulmonar Obstructiva Crónica/epidemiología
7.
Chem Res Toxicol ; 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37725788

RESUMEN

Cigarette smoking is an established cause of chronic obstructive pulmonary disease (COPD). Numerous studies implicate acrolein, which occurs in relatively high concentrations in cigarette smoke and reacts readily with proteins, as one causative factor for COPD in smokers. Far less is known about the possible roles in COPD of the related α,ß-unsaturated carbonyl compounds of cigarette smoke crotonaldehyde, methacrolein, and methyl vinyl ketone. In the study reported here, we analyzed mercapturic acids of these α,ß-unsaturated compounds in the urine of 413 confirmed cigarette smokers in the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS)─202 with COPD and 211 without COPD. The mercapturic acids analyzed were 3-hydroxypropyl mercapturic acid (3-HPMA) from acrolein, 3-hydroxy-1-methylpropyl mercapturic acid (HMPMA-1) from crotonaldehyde, 3-hydroxy-2-methylpropyl mercapturic acid (HMPMA-2) from methacrolein, and 3-hydroxy-3-methylpropyl mercapturic acid (HMPMA-3) from methyl vinyl ketone. In models adjusting for age, sex, race, pack years of tobacco use, and BMI, all four mercapturic acids were increased in individuals with COPD but not significantly. Stratified by the GOLD status, there were increased levels of the metabolites associated with GOLD 3-4 compared to that with GOLD 0, with the methacrolein metabolite HMPMA-2 reaching statistical significance (adjusted odds ratio 1.23 [95% CI: 1.00-1.53]). These results highlight the possible role of methacrolein, which has previously received little attention in this regard, as a causative factor in COPD in cigarette smokers.

8.
medRxiv ; 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37333382

RESUMEN

Objectives: Small airways disease (SAD) is a major cause of airflow obstruction in COPD patients, and has been identified as a precursor to emphysema. Although the amount of SAD in the lungs can be quantified using our Parametric Response Mapping (PRM) approach, the full breadth of this readout as a measure of emphysema and COPD progression has yet to be explored. We evaluated topological features of PRM-derived normal parenchyma and SAD as surrogates of emphysema and predictors of spirometric decline. Materials and Methods: PRM metrics of normal lung (PRMNorm) and functional SAD (PRMfSAD) were generated from CT scans collected as part of the COPDGene study (n=8956). Volume density (V) and Euler-Poincaré Characteristic (χ) image maps, measures of the extent and coalescence of pocket formations (i.e., topologies), respectively, were determined for both PRMNorm and PRMfSAD. Association with COPD severity, emphysema, and spirometric measures were assessed via multivariable regression models. Readouts were evaluated as inputs for predicting FEV1 decline using a machine learning model. Results: Multivariable cross-sectional analysis of COPD subjects showed that V and χ measures for PRMfSAD and PRMNorm were independently associated with the amount of emphysema. Readouts χfSAD (ß of 0.106, p<0.001) and VfSAD (ß of 0.065, p=0.004) were also independently associated with FEV1% predicted. The machine learning model using PRM topologies as inputs predicted FEV1 decline over five years with an AUC of 0.69. Conclusions: We demonstrated that V and χ of fSAD and Norm have independent value when associated with lung function and emphysema. In addition, we demonstrated that these readouts are predictive of spirometric decline when used as inputs in a ML model. Our topological PRM approach using PRMfSAD and PRMNorm may show promise as an early indicator of emphysema onset and COPD progression.

9.
Front Physiol ; 14: 1144192, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153221

RESUMEN

Purpose: The purpose of this study was to train and validate machine learning models for predicting rapid decline of forced expiratory volume in 1 s (FEV1) in individuals with a smoking history at-risk-for chronic obstructive pulmonary disease (COPD), Global Initiative for Chronic Obstructive Lung Disease (GOLD 0), or with mild-to-moderate (GOLD 1-2) COPD. We trained multiple models to predict rapid FEV1 decline using demographic, clinical and radiologic biomarker data. Training and internal validation data were obtained from the COPDGene study and prediction models were validated against the SPIROMICS cohort. Methods: We used GOLD 0-2 participants (n = 3,821) from COPDGene (60.0 ± 8.8 years, 49.9% male) for variable selection and model training. Accelerated lung function decline was defined as a mean drop in FEV1% predicted of > 1.5%/year at 5-year follow-up. We built logistic regression models predicting accelerated decline based on 22 chest CT imaging biomarker, pulmonary function, symptom, and demographic features. Models were validated using n = 885 SPIROMICS subjects (63.6 ± 8.6 years, 47.8% male). Results: The most important variables for predicting FEV1 decline in GOLD 0 participants were bronchodilator responsiveness (BDR), post bronchodilator FEV1% predicted (FEV1.pp.post), and CT-derived expiratory lung volume; among GOLD 1 and 2 subjects, they were BDR, age, and PRMlower lobes fSAD. In the validation cohort, GOLD 0 and GOLD 1-2 full variable models had significant predictive performance with AUCs of 0.620 ± 0.081 (p = 0.041) and 0.640 ± 0.059 (p < 0.001). Subjects with higher model-derived risk scores had significantly greater odds of FEV1 decline than those with lower scores. Conclusion: Predicting FEV1 decline in at-risk patients remains challenging but a combination of clinical, physiologic and imaging variables provided the best performance across two COPD cohorts.

10.
Am J Respir Crit Care Med ; 208(4): 451-460, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37159910

RESUMEN

Rationale: Cigarette smoking contributes to the risk of death through different mechanisms. Objectives: To determine how causes of and clinical features associated with death vary in tobacco cigarette users by lung function impairment. Methods: We stratified current and former tobacco cigarette users enrolled in Genetic Epidemiology of Chronic Obstructive Pulmonary Disease (COPDGene) into normal spirometry, PRISm (Preserved Ratio Impaired Spirometry), Global Initiative for Chronic Obstructive Lung Disease (GOLD) 1-2 COPD, and GOLD 3-4 COPD. Deaths were identified via longitudinal follow-up and Social Security Death Index search. Causes of death were adjudicated after a review of death certificates, medical records, and next-of-kin interviews. We tested associations between baseline clinical variables and all-cause mortality using multivariable Cox proportional hazards models. Measurements and Main Results: Over a 10.1-year median follow-up, 2,200 deaths occurred among 10,132 participants (age 59.5 ± 9.0 yr; 46.6% women). Death from cardiovascular disease was most frequent in PRISm (31% of deaths). Lung cancer deaths were most frequent in GOLD 1-2 (18% of deaths vs. 9-11% in other groups). Respiratory deaths outpaced competing causes of death in GOLD 3-4, particularly when BODE index ⩾7. St. George's Respiratory Questionnaire score ⩾25 was associated with higher mortality in all groups: Hazard ratio (HR), 1.48 (1.20-1.84) normal spirometry; HR, 1.40 (1.05-1.87) PRISm; HR, 1.80 (1.49-2.17) GOLD 1-2; HR, 1.65 (1.26-2.17) GOLD 3-4. History of respiratory exacerbations was associated with higher mortality in GOLD 1-2 and GOLD 3-4, quantitative emphysema in GOLD 1-2, and airway wall thickness in PRISm and GOLD 3-4. Conclusions: Leading causes of death vary by lung function impairment in tobacco cigarette users. Worse respiratory-related quality of life is associated with all-cause mortality regardless of lung function.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Productos de Tabaco , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Volumen Espiratorio Forzado , Pulmón , Calidad de Vida , Espirometría
11.
Respir Care ; 68(12): 1613-1622, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-37137711

RESUMEN

BACKGROUND: Chronic hypercapnic respiratory failure is associated with high mortality. Although previous work has demonstrated a mortality improvement with high-intensity noninvasive ventilation in COPD, it is unclear whether a PCO2 reduction strategy is associated with improved outcomes in other populations of chronic hypercapnia. METHODS: The objective of this study was to investigate the association between PCO2 reduction (by using transcutaneous PCO2 as an estimate for PaCO2 and survival in a broad population of individuals treated with noninvasive ventilation for chronic hypercapnia. We hypothesized that reductions in PCO2 would be associated with improved survival. Therefore, we performed a cohort study of all the subjects evaluated from February 2012 to January 2021 for noninvasive ventilation initiation and/or optimization due to chronic hypercapnia at a home ventilation clinic in an academic center. We used multivariable Cox proportional hazard models with time-varying coefficients and PCO2 as a time-varying covariate to test the association between PCO2 and all-cause mortality and when adjusting for known cofounders. RESULTS: The mean ± SD age of 337 subjects was 57 ± 16 years, 37% women, and 85% white. In a univariate analysis, survival probability increased with reductions in PCO2 to < 50 mm Hg after 90 d, and these remained significant after adjusting for age, sex, race, body mass index, diagnosis, Charlson comorbidity index, and baseline PCO2 . In the multivariable analysis, the subjects who had a PaCO2 < 50 mm Hg had a reduced mortality risk of 94% between 90 and 179 d (hazard ratio [HR] 0.06, 95% CI 0.01-0.50), 69% between 180 and 364 d (HR 0.31, 95% CI 0.12-0.79), and 73% for 365-730 d (HR 0.27, 95% CI 0.13-0.56). CONCLUSIONS: Reduction in PCO2 from baseline for subjects with chronic hypercapnia treated with noninvasive ventilation was associated with improved survival. Management strategies should target the greatest attainable reductions in PCO2 .


Asunto(s)
Ventilación no Invasiva , Enfermedad Pulmonar Obstructiva Crónica , Insuficiencia Respiratoria , Humanos , Femenino , Adulto , Persona de Mediana Edad , Anciano , Masculino , Ventilación no Invasiva/efectos adversos , Hipercapnia/terapia , Hipercapnia/complicaciones , Dióxido de Carbono , Enfermedad Pulmonar Obstructiva Crónica/terapia , Estudios de Cohortes , Estudios Prospectivos , Insuficiencia Respiratoria/etiología , Insuficiencia Respiratoria/terapia , Insuficiencia Respiratoria/diagnóstico
12.
Chronic Obstr Pulm Dis ; 10(3): 270-285, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37199719

RESUMEN

Background: Abnormal lung volumes representing air trapping identify the subset of smokers with preserved spirometry who develop spirometric chronic obstructive pulmonary disease (COPD) and adverse outcomes. However, how lung volumes evolve in early COPD as airflow obstruction develops remains unclear. Methods: To establish how lung volumes change with the development of spirometric COPD, we examined lung volumes from the pulmonary function data (seated posture) available in the U.S. Department of Veterans Affairs electronic health records (n=71,356) and lung volumes measured by computed tomography (supine posture) available from the COPD Genetic Epidemiology (COPDGene®) study (n=7969) and the SubPopulations and InterMediate Outcome Measures In COPD Study (SPIROMICS) (n=2552) cohorts, and studied their cross-sectional distributions and longitudinal changes across the airflow obstruction spectrum. Patients with preserved ratio-impaired spirometry (PRISm) were excluded from this analysis. Results: Lung volumes from all 3 cohorts showed similar patterns of distributions and longitudinal changes with worsening airflow obstruction. The distributions for total lung capacity (TLC), vital capacity (VC), and inspiratory capacity (IC) and their patterns of change were nonlinear and included different phases. When stratified by airflow obstruction using Global initiative for chronic Obstructive Lung Disease (GOLD) stages, patients with GOLD 1 (mild) COPD had larger lung volumes (TLC, VC, IC) compared to patients with GOLD 0 (smokers with preserved spirometry) or GOLD 2 (moderate) disease. In longitudinal follow-up of baseline GOLD 0 patients who progressed to spirometric COPD, those with an initially higher TLC and VC developed mild obstruction (GOLD 1) while those with an initially lower TLC and VC developed moderate obstruction (GOLD 2). Conclusions: In COPD, TLC, and VC have biphasic distributions, change in nonlinear fashions as obstruction worsens, and could differentiate those GOLD 0 patients at risk for more rapid spirometric disease progression.

13.
Sci Rep ; 13(1): 8228, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37217548

RESUMEN

Accelerated progression of chronic obstructive pulmonary disease (COPD) is associated with increased risks of hospitalization and death. Prognostic insights into mechanisms and markers of progression could facilitate development of disease-modifying therapies. Although individual biomarkers exhibit some predictive value, performance is modest and their univariate nature limits network-level insights. To overcome these limitations and gain insights into early pathways associated with rapid progression, we measured 1305 peripheral blood and 48 bronchoalveolar lavage proteins in individuals with COPD [n = 45, mean initial forced expiratory volume in one second (FEV1) 75.6 ± 17.4% predicted]. We applied a data-driven analysis pipeline, which enabled identification of protein signatures that predicted individuals at-risk for accelerated lung function decline (FEV1 decline ≥ 70 mL/year) ~ 6 years later, with high accuracy. Progression signatures suggested that early dysregulation in elements of the complement cascade is associated with accelerated decline. Our results propose potential biomarkers and early aberrant signaling mechanisms driving rapid progression in COPD.


Asunto(s)
Pulmón , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Progresión de la Enfermedad , Fumar/efectos adversos , Volumen Espiratorio Forzado , Lavado Broncoalveolar , Biomarcadores
14.
Crit Care ; 27(1): 21, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36650593

RESUMEN

BACKGROUND: In patients with acute respiratory distress syndrome undergoing mechanical ventilation, positive end-expiratory pressure (PEEP) can lead to recruitment or overdistension. Current strategies utilized for PEEP titration do not permit the distinction. Electric impedance tomography (EIT) detects and quantifies the presence of both collapse and overdistension. We investigated whether using EIT-guided PEEP titration leads to decreased mechanical power compared to high-PEEP/FiO2 tables. METHODS: A single-center, randomized crossover pilot trial comparing EIT-guided PEEP selection versus PEEP selection using the High-PEEP/FiO2 table in patients with moderate-severe acute respiratory distress syndrome. The primary outcome was the change in mechanical power after each PEEP selection strategy. Secondary outcomes included changes in the 4 × driving pressure + respiratory rate (4 ΔP, + RR index) index, driving pressure, plateau pressure, PaO2/FiO2 ratio, and static compliance. RESULTS: EIT was consistently associated with a decrease in mechanical power compared to PEEP/FiO2 tables (mean difference - 4.36 J/min, 95% CI - 6.7, - 1.95, p = 0.002) and led to lower values in the 4ΔP + RR index (- 11.42 J/min, 95% CI - 19.01, - 3.82, p = 0.007) mainly driven by a decrease in the elastic-dynamic power (- 1.61 J/min, - 2.99, - 0.22, p = 0.027). The elastic-static and resistive powers were unchanged. Similarly, EIT led to a statistically significant change in set PEEP (- 2 cmH2O, p = 0.046), driving pressure, (- 2.92 cmH2O, p = 0.003), peak pressure (- 6.25 cmH2O, p = 0.003), plateau pressure (- 4.53 cmH2O, p = 0.006), and static respiratory system compliance (+ 7.93 ml/cmH2O, p = 0.008). CONCLUSIONS: In patients with moderate-severe acute respiratory distress syndrome, EIT-guided PEEP titration reduces mechanical power mainly through a reduction in elastic-dynamic power. Trial registration This trial was prospectively registered on Clinicaltrials.gov (NCT03793842) on January 4th, 2019.


Asunto(s)
Síndrome de Dificultad Respiratoria , Humanos , Impedancia Eléctrica , Proyectos Piloto , Síndrome de Dificultad Respiratoria/terapia , Respiración con Presión Positiva/métodos , Tomografía/métodos
15.
Artículo en Inglés | MEDLINE | ID: mdl-35502294

RESUMEN

Chronic obstructive pulmonary disease (COPD) is heterogenous in its clinical manifestations and disease progression. Patients often have disease courses that are difficult to predict with readily available data, such as lung function testing. The ability to better classify COPD into well-defined groups will allow researchers and clinicians to tailor novel therapies, monitor their effects, and improve patient-centered outcomes. Different modalities of assessing these COPD phenotypes are actively being studied, and an area of great promise includes the use of quantitative computed tomography (QCT) techniques focused on key features such as airway anatomy, lung density, and vascular morphology. Over the last few decades, companies around the world have commercialized automated CT software packages that have proven immensely useful in these endeavors. This article reviews the key features of several commercial platforms, including the technologies they are based on, the metrics they can generate, and their clinical correlations and applications. While such tools are increasingly being used in research and clinical settings, they have yet to be consistently adopted for diagnostic work-up and treatment planning, and their full potential remains to be explored.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Progresión de la Enfermedad , Humanos , Pulmón/diagnóstico por imagen , Atención al Paciente , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Enfermedad Pulmonar Obstructiva Crónica/terapia , Programas Informáticos , Tomografía Computarizada por Rayos X/métodos
16.
Metabolites ; 12(5)2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35629872

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a disease with marked metabolic disturbance. Previous studies have shown the association between single metabolites and lung function for COPD, but whether a combination of metabolites could predict phenotype is unknown. We developed metabolomic severity scores using plasma metabolomics from the Metabolon platform from two US cohorts of ever-smokers: the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS) (n = 648; training/testing cohort; 72% non-Hispanic, white; average age 63 years) and the COPDGene Study (n = 1120; validation cohort; 92% non-Hispanic, white; average age 67 years). Separate adaptive LASSO (adaLASSO) models were used to model forced expiratory volume at one second (FEV1) and MESA-adjusted lung density using 762 metabolites common between studies. Metabolite coefficients selected by the adaLASSO procedure were used to create a metabolomic severity score (metSS) for each outcome. A total of 132 metabolites were selected to create a metSS for FEV1. The metSS-only models explained 64.8% and 31.7% of the variability in FEV1 in the training and validation cohorts, respectively. For MESA-adjusted lung density, 129 metabolites were selected, and metSS-only models explained 59.0% of the variability in the training cohort and 17.4% in the validation cohort. Regression models including both clinical covariates and the metSS explained more variability than either the clinical covariate or metSS-only models (53.4% vs. 46.4% and 31.6%) in the validation dataset. The metabolomic pathways for arginine biosynthesis; aminoacyl-tRNA biosynthesis; and glycine, serine, and threonine pathway were enriched by adaLASSO metabolites for FEV1. This is the first demonstration of a respiratory metabolomic severity score, which shows how a metSS can add explanation of variance to clinical predictors of FEV1 and MESA-adjusted lung density. The advantage of a comprehensive metSS is that it explains more disease than individual metabolites and can account for substantial collinearity among classes of metabolites. Future studies should be performed to determine whether metSSs are similar in younger, and more racially and ethnically diverse populations as well as whether a metabolomic severity score can predict disease development in individuals who do not yet have COPD.

17.
Cells ; 11(4)2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35203345

RESUMEN

Chronic rejection of lung allografts has two major subtypes, bronchiolitis obliterans syndrome (BOS) and restrictive allograft syndrome (RAS), which present radiologically either as air trapping with small airways disease or with persistent pleuroparenchymal opacities. Parametric response mapping (PRM), a computed tomography (CT) methodology, has been demonstrated as an objective readout of BOS and RAS and bears prognostic importance, but has yet to be correlated to biological measures. Using a topological technique, we evaluate the distribution and arrangement of PRM-derived classifications of pulmonary abnormalities from lung transplant recipients undergoing redo-transplantation for end-stage BOS (N = 6) or RAS (N = 6). Topological metrics were determined from each PRM classification and compared to structural and biological markers determined from microCT and histopathology of lung core samples. Whole-lung measurements of PRM-defined functional small airways disease (fSAD), which serves as a readout of BOS, were significantly elevated in BOS versus RAS patients (p = 0.01). At the core-level, PRM-defined parenchymal disease, a potential readout of RAS, was found to correlate to neutrophil and collagen I levels (p < 0.05). We demonstrate the relationship of structural and biological markers to the CT-based distribution and arrangement of PRM-derived readouts of BOS and RAS.


Asunto(s)
Bronquiolitis Obliterante , Enfermedad Injerto contra Huésped , Trasplante de Pulmón , Aloinjertos , Biomarcadores , Bronquiolitis Obliterante/diagnóstico por imagen , Humanos , Inflamación , Pulmón/diagnóstico por imagen , Trasplante de Pulmón/efectos adversos , Síndrome , Tomografía Computarizada por Rayos X/métodos
18.
Curr Opin Pulm Med ; 28(2): 99-108, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34652295

RESUMEN

PURPOSE OF REVIEW: Risk assessment tools are essential in COPD care to help clinicians identify patients at higher risk of accelerated lung function decline, respiratory exacerbations, hospitalizations, and death. RECENT FINDINGS: Conventional methods of assessing risk have focused on spirometry, patient-reported symptoms, functional status, and a combination of these tools in composite indices. More recently, qualitatively and quantitatively assessed chest imaging findings, such as emphysema, large and small airways disease, and pulmonary vascular abnormalities have been associated with poor long-term outcomes in COPD patients. Although several blood and sputum biomarkers have been investigated for risk assessment in COPD, most still warrant further validation. Finally, novel remote digital monitoring technologies may be valuable to predict exacerbations but their large-scale performance, ease of implementation, and cost effectiveness remain to be determined. SUMMARY: Given the complex heterogeneity of COPD, any single metric is unlikely to fully capture the risk of poor long-term outcomes. Therefore, clinicians should review all available clinical data, including spirometry, symptom severity, functional status, chest imaging, and bloodwork, to guide personalized preventive care of COPD patients. The potential of machine learning tools and remote monitoring technologies to refine COPD risk assessment is promising but remains largely untapped pending further investigation.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Humanos , Pulmón , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Espirometría , Esputo
19.
Chest ; 161(4): 960-970, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34785234

RESUMEN

BACKGROUND: Body composition measures, specifically low weight or reduced muscle mass, are associated with mortality in COPD, but the effect of longitudinal body composition changes is undefined. RESEARCH QUESTION: Is the longitudinal loss of fat-free mass (FFM) associated with increased mortality, including in those with initially normal or elevated body composition metrics? STUDY DESIGN AND METHODS: Participants with complete data for at least one visit in the COPDGene study (n = 9,268) and the ECLIPSE study (n = 1,760) were included and monitored for 12 and 8 years, respectively. Pectoralis muscle area (PMA) was derived from thoracic CT scans and used as a proxy for FFM. A longitudinal mixed submodel for PMA and a Cox proportional hazards submodel for survival were fitted on a joint distribution, using a shared random intercept parameter and Markov chain Monte Carlo parameter estimation. RESULTS: Both cohorts demonstrated a left-shifted distribution of baseline FFM, not reflected in BMI, and an increase in all-cause mortality risk associated with longitudinal loss of PMA. For each 1-cm2 PMA loss, mortality increased 3.1% (95% CI, 2.4%-3.7%; P < .001) in COPDGene, and 2.4% (95% CI, 0.9%-4.0%; P < .001) in ECLIPSE. Increased mortality risk was independent of enrollment values for BMI and disease severity [BODE (body mass, airflow obstruction, dyspnea, and exercise capacity) index quartiles] and was significant even in participants with initially greater than average PMA. INTERPRETATION: Longitudinal loss of PMA is associated with increased all-cause mortality, regardless of BMI or initial muscle mass. Consideration of novel screening tests and further research into mechanisms contributing to muscle decline may improve risk stratification and identify novel therapeutic targets in ever smokers.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Fumadores , Composición Corporal , Índice de Masa Corporal , Humanos , Estudios Longitudinales , Pulmón , Músculos Pectorales , Enfermedad Pulmonar Obstructiva Crónica/complicaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...