Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Data ; 9(1): 428, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35858969

RESUMEN

The combustion of fossil fuels is considered a major cause of climate change, which is why the reduction of emissions has become a key goal of the Paris climate agreement. Coherent monitoring of the energy profile of fishing vessels through an energy audit can effectively identify sources of inefficiency, allowing for the deployment of well-informed and cost-efficient remedial interventions. We applied energy audits to a test fleet of ten vessels, representing three typical Mediterranean trawl fisheries: midwater pair trawl, bottom otter trawl, and Rapido beam trawl. Overall, these fisheries use approximately 2.9 litres of fuel per kilogram of landed fish, but the fuel consumption rate varies widely according to gear type and vessel size. This amount of fuel burned from capture to landing generates approximately 7.6 kg∙CO2/kg fish on average. Minimising impacts and energy consumption throughout the product chain may be another essential element needed to reduce the environmental costs of fishing. Our results provided a set of recognised benchmarks that can be used for monitoring progress in this field.


Asunto(s)
Huella de Carbono , Explotaciones Pesqueras , Animales , Cambio Climático
2.
PLoS One ; 14(1): e0210659, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30645620

RESUMEN

Benthic-pelagic coupling plays a pivotal role in aquatic ecosystems but the effects of fishery driven interactions on its functioning has been largely overlooked. Disentangling the benthic-pelagic links including effects of mixed fisheries, however, needs sketching a whole description of ecosystem interactions using quantitative tools. A holistic food web model has been here developed in order to understand the interplay between the benthic-pelagic coupling and mixed fisheries in a Mediterranean system such as the Strait of Sicily. The reconstruction of the food web required review and integration of a vast set of local and regional biological information from bacteria to large pelagic species that were aggregated into 72 functional groups. Fisheries were described by 18 fleet segments resulting from combination of fishing gears and fishing vessel size. The input-output analysis on the food web of energy pathways allowed identifying effects of biological and fishery components. Results showed that the structure of the Strait of Sicily food web is complex. Similarly to other Mediterranean areas, the food web of the Strait of Sicily encompasses 4.5 trophic levels (TLs) with the highest TLs reached by bluefin tuna, swordfish and large hake and largely impacted by bottom trawling and large longline. Importantly, benthic-pelagic coupling is affected by direct and indirect impacts among groups of species, fleets and fleets-species through the whole trophic spectrum of the food web. Moreover, functional groups able to move on large spatial scales or life history of which is spent between shelf and slope domains play a key role in linking subsystems together and mediate interactions in the Mediterranean mixed fisheries.


Asunto(s)
Ecosistema , Modelos Teóricos , Animales , Explotaciones Pesqueras , Sedimentos Geológicos , Región Mediterránea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...