Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36982719

RESUMEN

Ethanol (EtOH) alters many cellular processes in yeast. An integrated view of different EtOH-tolerant phenotypes and their long noncoding RNAs (lncRNAs) is not yet available. Here, large-scale data integration showed the core EtOH-responsive pathways, lncRNAs, and triggers of higher (HT) and lower (LT) EtOH-tolerant phenotypes. LncRNAs act in a strain-specific manner in the EtOH stress response. Network and omics analyses revealed that cells prepare for stress relief by favoring activation of life-essential systems. Therefore, longevity, peroxisomal, energy, lipid, and RNA/protein metabolisms are the core processes that drive EtOH tolerance. By integrating omics, network analysis, and several other experiments, we showed how the HT and LT phenotypes may arise: (1) the divergence occurs after cell signaling reaches the longevity and peroxisomal pathways, with CTA1 and ROS playing key roles; (2) signals reaching essential ribosomal and RNA pathways via SUI2 enhance the divergence; (3) specific lipid metabolism pathways also act on phenotype-specific profiles; (4) HTs take greater advantage of degradation and membraneless structures to cope with EtOH stress; and (5) our EtOH stress-buffering model suggests that diauxic shift drives EtOH buffering through an energy burst, mainly in HTs. Finally, critical genes, pathways, and the first models including lncRNAs to describe nuances of EtOH tolerance are reported here.


Asunto(s)
ARN Largo no Codificante , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , ARN Largo no Codificante/genética , Etanol/farmacología , Etanol/metabolismo
2.
Future Microbiol ; 11: 1299-1313, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27662506

RESUMEN

AIM: This study aims to understand which Candida orthopsilosis protein aids fungus adaptation upon its switching from planktonic growth to biofilm. MATERIALS & METHODS: Ion mobility separation within mass spectrometry analysis combination were used. RESULTS: Proteins mapped for different biosynthetic pathways showed that selective ribosome autophagy might occur in biofilms. Glucose, used as a carbon source in the glycolytic flux, changed to glycogen and trehalose. CONCLUSION: Candida orthopsilosis expresses proteins that combine a variety of mechanisms to provide yeasts with the means to adjust the catalytic properties of enzymes. Adjustment of the enzymes helps modulate the biosynthesis/degradation rates of the available nutrients, in order to control and coordinate the metabolic pathways that enable cells to express an adequate response to nutrient availability.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Candida/metabolismo , Candida/fisiología , Metaboloma/fisiología , Plancton/crecimiento & desarrollo , Aminoácidos/biosíntesis , Aminoácidos/genética , Candida/genética , Candida/crecimiento & desarrollo , Carbono/metabolismo , Ciclo del Ácido Cítrico , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/fisiología , Regulación Fúngica de la Expresión Génica/genética , Regulación Fúngica de la Expresión Génica/fisiología , Ontología de Genes , Glucosa/metabolismo , Glucógeno/metabolismo , Glucólisis , Análisis de Flujos Metabólicos , Redes y Vías Metabólicas/genética , Redes y Vías Metabólicas/fisiología , Metaboloma/genética , Familia de Multigenes , Plancton/metabolismo , Plancton/fisiología , Proteoma/genética , Proteoma/metabolismo , Proteoma/fisiología , Trehalosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...