Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 18(1): e0279847, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36602984

RESUMEN

INTRODUCTION: In the quest to improve the understanding of climate change impacts on elements of the atmospheric, physical, and life systems, scientists are challenged by the scarcity and uneven distribution of grounded data. Through their long history of interaction with the environment, Indigenous Peoples and local communities have developed complex knowledge systems that allow them to detect impacts of climate change in the local environment. The study protocol presented here is designed 1) to inventory climate change impacts on the atmospheric, physical, and life systems based on local knowledge and 2) to test hypotheses on the global spatial, socioeconomic, and demographic distribution of reported impacts. The protocol has been developed within the framework of a project aiming to bring insights from Indigenous and local knowledge systems to climate research (https://licci.eu). METHODS: Data collection uses a mixed-method approach and relies on the collaboration of a team of 50 trained partners working in sites where people's livelihood directly depend on nature. The data collection protocol consists of two steps. Step 1 includes the collection of secondary data (e.g., spatial and meteorological data) and site contextual information (e.g., village infrastructure, services). Step 1 also includes the use of 1) semi-structured interviews (n = 20-30/site) to document observations of environmental change and their drivers and 2) focus group discussions to identify consensus in the information gathered. Step 2 consist in the application of a household (n from 75 to 125) and individual survey (n from 125 to 175) using a standardized but locally adapted instrument. The survey includes information on 1) individual and household socio-demographic characteristics, 2) direct dependence on nature, 3) household's vulnerability, and 4) individual perceptions of climate change impacts. Survey data are entered in a specifically designed database. EXPECTED RESULTS: This protocol allows the systematic documentation and analysis of the patterned distribution of local indicators of climate change impacts across climate types and livelihood activities. Data collected with this protocol helps fill important gaps on local climate change impacts research and can provide tangible outcomes for local people who will be able to better reflect on how climate change impacts them.


Asunto(s)
Cambio Climático , Pueblos Indígenas , Humanos , Encuestas y Cuestionarios , Grupos de Población , Bases de Datos Factuales
2.
Evol Appl ; 9(10): 1241-1257, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27877203

RESUMEN

Crop populations in smallholder farming systems are shaped by the interaction of biological, ecological, and social processes, occurring on different spatiotemporal scales. Understanding these dynamics is fundamental for the conservation of crop genetic resources. In this study, we investigated the processes involved in sorghum and pearl millet diversity dynamics on Mount Kenya. Surveys were conducted in ten sites distributed along two elevation transects and occupied by six ethnolinguistic groups. Varieties of both species grown in each site were inventoried and characterized using SSR markers. Genetic diversity was analyzed using both individual- and population-based approaches. Surveys of seed lot sources allowed characterizing seed-mediated gene flow. Past sorghum diffusion dynamics were explored by comparing Mount Kenya sorghum diversity with that of the African continent. The absence of structure in pearl millet genetic diversity indicated common ancestry and/or important pollen- and seed-mediated gene flow. On the contrary, sorghum varietal and genetic diversity showed geographic patterns, pointing to different ancestry of varieties, limited pollen-mediated gene flow, and geographic patterns in seed-mediated gene flow. Social and ecological processes involved in shaping seed-mediated gene flow are further discussed.

3.
Proc Natl Acad Sci U S A ; 113(1): 98-103, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26699480

RESUMEN

Recent studies investigating the relationship between crop genetic diversity and human cultural diversity patterns showed that seed exchanges are embedded in farmers' social organization. However, our understanding of the social processes involved remains limited. We investigated how farmers' membership in three major social groups interacts in shaping sorghum seed exchange networks in a cultural contact zone on Mount Kenya. Farmers are members of residence groups at the local scale and of dialect groups clustered within larger ethnolinguistic units at a wider scale. The Chuka and Tharaka, who are allied in the same ethnolinguistic unit, coexist with the Mbeere dialect group in the study area. We assessed farmers' homophily, propensity to exchange seeds with members of the same group, using exponential random graph models. We showed that homophily is significant within both residence and ethnolinguistic groups. At these two levels, homophily is driven by the kinship system, particularly by the combination of patrilocal residence and ethnolinguistic endogamy, because most seeds are exchanged among relatives. Indeed, residential homophily in seed exchanges results from local interactions between women and their in-law family, whereas at a higher level, ethnolinguistic homophily is driven by marriage endogamy. Seed exchanges and marriage ties are interrelated, and both are limited between the Mbeere and the other groups, although frequent between the Chuka and Tharaka. The impact of these social homophily processes on crop diversity is discussed.


Asunto(s)
Productos Agrícolas/genética , Diversidad Cultural , Agricultores/psicología , Semillas , Red Social , Sorghum/genética , Variación Genética , Humanos , Kenia , Lingüística
4.
PLoS One ; 9(3): e92178, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24637745

RESUMEN

Understanding the effects of actions undertaken by human societies on crop evolution processes is a major challenge for the conservation of genetic resources. This study investigated the mechanisms whereby social boundaries associated with patterns of ethnolinguistic diversity have influenced the on-farm distribution of sorghum diversity. Social boundaries limit the diffusion of planting material, practices and knowledge, thus shaping crop diversity in situ. To assess the effect of social boundaries, this study was conducted in the contact zone between the Chuka, Mbeere and Tharaka ethnolinguistic groups in eastern Kenya. Sorghum varieties were inventoried and samples collected in 130 households. In all, 297 individual plants derived from seeds collected under sixteen variety names were characterized using a set of 18 SSR molecular markers and 15 morphological descriptors. The genetic structure was investigated using both a Bayesian assignment method and distance-based clustering. Principal Coordinates Analysis was used to describe the structure of the morphological diversity of the panicles. The distribution of the varieties and the main genetic clusters across ethnolinguistic groups was described using a non-parametric MANOVA and pairwise Fisher tests. The spatial distribution of landrace names and the overall genetic spatial patterns were significantly correlated with ethnolinguistic partition. However, the genetic structure inferred from molecular makers did not discriminate the short-cycle landraces despite their morphological distinctness. The cases of two improved varieties highlighted possible fates of improved materials. The most recent one was often given the name of local landraces. The second one, that was introduced a dozen years ago, displays traces of admixture with local landraces with differential intensity among ethnic groups. The patterns of congruence or discordance between the nomenclature of farmers' varieties and the structure of both genetic and morphological diversity highlight the effects of the social organization of communities on the diffusion of seed, practices, and variety nomenclature.


Asunto(s)
Agricultura , Etnicidad , Variación Genética , Lingüística , Sorghum/genética , Genética de Población , Geografía , Humanos , Kenia , Familia de Multigenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...