Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Eur Spine J ; 33(2): 663-672, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37962687

RESUMEN

PURPOSE: To understand how the axial plane deformity contributes to progression of the three-dimensional spinal deformity of Adolescent Idiopathic Scoliosis (AIS), with a main thoracic curve type, using a series of sequential magnetic resonance images (MRI). METHODS: Twenty-seven AIS patients (at scan 1: mean 12.4 years (± 1.5), mean Cobb angle 29.1°(± 8.8°)) had 3 MRI scans (T4-L1) performed at intervals of mean 0.7 years (± 0.4). The outer profile of the superior and inferior endplates were traced on a reformatted axial image using ImageJ (NIH). Endplate AVR, and intravertebral rotation (IVR), defined as the difference between superior and inferior endplate AVR, was calculated for each vertebral level. RESULTS: For all patients and scans, the mean AVR was greatest at the curve apex, with AVR diminishing in a caudal and cephalic direction from the apex. At scan 3 the mean apical AVR was 15.1°(± 4.6°) with a mean change in apical AVR between MRI 1 and 3 of 2.7°(± 2.9°). The increase in standing height between MRI 1 and 3 was mean 7.4 cm (± 4.6). Linear regression showed a positive correlation between apical AVR and Cobb angle (R2 = 0.57, P < 0.001), and a positive correlation between apical AVR and rib hump (R2 = 0.54, p < 0.001). The mean change in IVR was greater 3 vertebral levels cephalic and caudal to the apex (1.4°(± 4.1°) and 1.2°(± 2.0°), respectively), compared to the apex (0.4°(± 3.1°)). CONCLUSIONS: AVR increased, during curve progression, most markedly at the curve apex. The greatest IVR was observed at the periapical levels, with the apex by contrast having only a modest degree of rotation, suggesting the periapical vertebral levels of the scoliosis deformity may be a significant driver in the progression of AIS.


Asunto(s)
Escoliosis , Humanos , Adolescente , Escoliosis/diagnóstico por imagen , Estatura , Modelos Lineales , Imagen por Resonancia Magnética , Rotación
2.
Spine (Phila Pa 1976) ; 48(23): 1642-1651, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37702242

RESUMEN

STUDY DESIGN: A prospective cohort study. OBJECTIVE: Detail typical three-dimensional segmental deformities and their rates of change that occur within developing adolescent idiopathic scoliosis (AIS) spines over multiple timepoints. SUMMARY OF BACKGROUND DATA: AIS is a potentially progressive deforming condition that occurs in three dimensions of the scoliotic spine during periods of growth. However, there remains a gap for multiple timepoint segmental deformity analysis in AIS cohorts during development. MATERIALS AND METHODS: Thirty-six female patients with Lenke 1 AIS curves underwent two to six sequential magnetic resonance images. Scans were reformatted to produce images in orthogonal dimensions. Wedging angles and rotatory values were measured for segmental elements within the major curve. Two-tailed, paired t tests compared morphologic differences between sequential scans. Rates of change were calculated for variables given the actual time between successive scans. Pearson correlation coefficients were determined for multidimensional deformity measurements. RESULTS: Vertebral bodies were typically coronally convexly wedged, locally lordotic, convexly axially rotated, and demonstrated evidence of local mechanical torsion. Between the first and final scans, apical measures of coronal wedging and axial rotation were all greater in both vertebral and intervertebral disk morphology than nonapical regions (all reaching differences where P <0.05). No measures of sagittal deformity demonstrated a statistically significant change between scans. Cross-planar correlations were predominantly apparent between coronal and axial planes, with sagittal plane parameters rarely correlating across dimensions. Rates of segmental deformity changes between earlier scans were characterized by coronal plane convex wedging and convexly directed axial rotation. The major locally lordotic deformity changes that did occur in the sagittal plane were static between scans. CONCLUSIONS: This novel investigation documented a three-dimensional characterization of segmental elements of the growing AIS spine and reported these changes across multiple timepoints. Segmental elements are typically deformed from initial presentation, and subsequent changes occur in separate orthogonal planes at unique times.


Asunto(s)
Cifosis , Lordosis , Escoliosis , Humanos , Adolescente , Femenino , Escoliosis/patología , Estudios Prospectivos , Vértebras Torácicas/patología , Vértebras Lumbares/patología , Imagen por Resonancia Magnética/métodos , Lordosis/patología , Cifosis/patología , Imagenología Tridimensional/métodos
3.
Spine Deform ; 11(6): 1297-1307, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37432604

RESUMEN

PURPOSE: Vertebral body tethering (VBT) is a recent procedure to correct and reduce spinal curves in skeletally immature patients with adolescent idiopathic scoliosis (AIS). The purpose of this systematic review and meta-analysis is to determine the expected curve reduction and potential complications for adolescent patients after VBT. METHODS: PubMed, Embase, Google Scholar and Cochrane databases were searched until February 2022. Records were screened against pre-defined inclusion and exclusion criteria. Data sources were prospective and retrospective studies. Demographics, mean differences in Cobb angle, surgical details and complication rates were recorded. Meta-analysis was conducted using a random-effects model. RESULTS: This systematic review includes 19 studies, and the meta-analysis includes 16 of these. VBT displayed a statistically significant reduction in Cobb angle from pre-operative to final (minimum 2 years) measurements. The initial mean Cobb angle was 47.8° (CI 95% 42.9-52.7°) and decreased to 22.2° (CI 95% 19.9-24.5°). The mean difference is - 25.8° (CI 95% - 28.9-22.7) (p < 0.01). The overall complication rate was 23% (CI 95% 14.4-31.6%), the most common complication was tether breakage 21.9% (CI 95% 10.6-33.1%). The spinal fusion rate was 7.2% (CI 95% 2.3-12.1%). CONCLUSION: VBT results in a significant reduction of AIS at 2 years of follow-up. Overall complication rate was relatively high although the consequences of the complications are unknown. Further research is required to explore the reasons behind the complication rate and determine the optimal timing for the procedure. VBT remains a promising new procedure that is effective at reducing scoliotic curves and preventing spinal fusion in the majority of patients. LEVEL OF EVIDENCE: Systematic review of Therapeutic Studies with evidence level II-IV.

4.
Sci Rep ; 13(1): 5574, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-37019938

RESUMEN

Adolescent Idiopathic Scoliosis (AIS) is a 3D spine deformity that also causes ribcage and torso distortion. While clinical metrics are important for monitoring disorder progression, patients are often most concerned about their cosmesis. The aim of this study was to automate the quantification of AIS cosmesis metrics, which can be measured reliably from patient-specific 3D surface scans (3DSS). An existing database of 3DSS for pre-operative AIS patients treated at the Queensland Children's Hospital was used to create 30 calibrated 3D virtual models. A modular generative design algorithm was developed on the Rhino-Grasshopper software to measure five key AIS cosmesis metrics from these models-shoulder, scapula and hip asymmetry, torso rotation and head-pelvis shift. Repeat cosmetic measurements were calculated from user-selected input on the Grasshopper graphical interface. InterClass-correlation (ICC) was used to determine intra- and inter-user reliability. Torso rotation and head-pelvis shift measurements showed excellent reliability (> 0.9), shoulder asymmetry measurements showed good to excellent reliability (> 0.7) and scapula and hip asymmetry measurements showed good to moderate reliability (> 0.5). The ICC results indicated that experience with AIS was not required to reliably measure shoulder asymmetry, torso rotation and head-pelvis shift, but was necessary for the other metrics. This new semi-automated workflow reliably characterises external torso deformity, reduces the dependence on manual anatomical landmarking, and does not require bulky/expensive equipment.


Asunto(s)
Cosméticos , Cifosis , Escoliosis , Niño , Humanos , Adolescente , Escoliosis/cirugía , Reproducibilidad de los Resultados , Torso , Hombro
5.
PLoS One ; 18(3): e0282634, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36952526

RESUMEN

INTRODUCTION: 3D Non-Contact surface scanning (3DSS) is used in both biomechanical and clinical studies to capture accurate 3D images of the human torso, and to better understand the shape and posture of the spine-both healthy and pathological. This study sought to determine the efficacy and accuracy of using 3DSS of the posterior torso, to determine the curvature of the spinal column in the lateral lying position. METHODS: A cohort of 50 healthy adults underwent 3DSS and Magnetic Resonance Imaging (MRI) to correlate the contours of the external spine surface with the internal spinal column. The correlation analysis was composed of two phases: (1) MRI vertebral points vs MRI external spine surface markers; and (2) MRI external spine surface markers vs 3DSS external spine surface markers. The first phase compared the profiles of fiducial markers (vitamin capsules) adhered to the skin surface over the spinous processes against the coordinates of the spinous processes-assessing the linear distance between the profiles, and similarity of curvature, in the sagittal and coronal planes. The second phase compared 3DSS external spine surface markers with the MRI external spine surface markers in both planes, with further qualitative assessment for postural changes. RESULTS: The distance between the MRI vertebral points and MRI external spine surface markers showed strong statistically significant correlation with BMI in both sagittal and coronal planes. Kolmogorov-Smirnov (KS) tests showed similar no significant difference in curvature, k, in almost all participants on both planes. In the second phase, the coronal 3DSS external spine surface profiles were statistically different to the MRI external spine surface markers in 44% of participants. Qualitative assessment showed postural changes between MRI and 3DSS measurements in these participants. CONCLUSION: These study findings demonstrate the utility and accuracy of using anatomical landmarks overlaid on the spinous processes, to identify the position of the spinal bones using 3DSS. Using this method, it will be possible to predict the internal spinal curvature from surface topography, provided that the thickness of the overlaying subcutaneous adipose layer is considered, thus enabling postural analysis of spinal shape and curvature to be carried out in biomechanical and clinical studies without the need for radiographic imaging.


Asunto(s)
Escoliosis , Curvaturas de la Columna Vertebral , Adulto , Humanos , Escoliosis/diagnóstico por imagen , Columna Vertebral/diagnóstico por imagen , Curvaturas de la Columna Vertebral/diagnóstico por imagen , Radiografía , Torso
6.
Spine Deform ; 8(6): 1193-1204, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32557264

RESUMEN

STUDY DESIGN: Prospective cohort study. OBJECTIVES: Investigate the progressive changes in pedicle morphometry and the spatial relationship between the pedicles and neurovascular structures in patients with AIS during growth. Adolescent idiopathic scoliosis (AIS) is a complex three-dimensional spine deformity. AIS pedicles are known to be asymmetrical when compared to adolescents without scoliosis. Defining the anatomical changes occurring progressively in scoliosis as it increases with time and growth is essential for understanding the pathophysiology of scoliosis and for treatment planning. MRI is the ideal method to study the growing spine without ionising radiation. METHODS: 24 females with AIS (mean 12.6 years, right sided main thoracic curves) and 20 non-scoliotic females (mean 11.5 years) were selected from an ongoing database. Participants underwent two 3D MRI scans (3 T scanner, T1, 0.5 mm isotropic voxels) approximately 1 year apart (AIS: mean 1.3 ± 0.05 years, control: mean 1.0 ± 0.1 years). The pedicle width, chord length, pedicle height, transverse pedicle angle, sagittal pedicle angle, distance from vertebrae to aorta and distance from pedicle to dural sac were measured from T5 to T12. Inter- and intra-observer variability was assessed. RESULTS: From scans 1-2 in the AIS group, the dural sac became closer to the left pedicle (p < 0.05, T6, T8-T10 and T12) while the distance from the vertebrae to the aorta increased (p < 0.05, T6-T10). No significant changes in these measurements were observed in the non-scoliotic group. Between scans, the AIS chord length and transverse pedicle angle increased on the left side around the apex (p < 0.05) creating asymmetries not seen in the non-scoliotic cohort. The mean pedicle height increased symmetrically in the non-scoliosis cohort (p < 0.05) and asymmetrically in the AIS group with the right side growing faster than the left at T6-T7 (p < 0.05). CONCLUSION: Asymmetrical growth patterns occur in the vertebral posterior elements of AIS patients compared to the symmetrical growth patterns found in the non-scoliotic participants. LEVEL OF EVIDENCE: Level II prospective comparative study.


Asunto(s)
Escoliosis/patología , Cuerpo Vertebral/crecimiento & desarrollo , Cuerpo Vertebral/patología , Adolescente , Factores de Edad , Niño , Progresión de la Enfermedad , Femenino , Humanos , Imagenología Tridimensional , Imagen por Resonancia Magnética , Estudios Prospectivos , Escoliosis/diagnóstico por imagen , Cuerpo Vertebral/anatomía & histología , Cuerpo Vertebral/diagnóstico por imagen
7.
Spine Deform ; 8(5): 901-910, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32451976

RESUMEN

STUDY DESIGN: Cross-sectional study. OBJECTIVES: To provide a comprehensive, multi-stage investigation of vertebral body (VB) and intervertebral disc (IVD) coronal plane deformities for adolescent idiopathic scoliosis (AIS) patients with a main thoracic curve type, using a series of sequential magnetic resonance images (MRIs). Despite numerous investigations of AIS deformity at the spinal segmental level, there is little consensus as to the major contributor to the lateral curvature of a scoliotic spine. Moreover, scoliotic deformity is often described along a continuum of progression, with few studies having characterised the change in segmental deformity for AIS patients whose deformity progresses clinically over time. METHODS: 30 female AIS patients with primary thoracic curves were included between 2012 and 2016. Three sequential MRIs were captured for each patient. Datasets were reformatted to produce true coronal plane images of the thoracic spine (T4-L1). Overall curve morphology, coronal plane IVD and VB segmental deformity and rates of growth were analysed. RESULTS: Right-side asymmetry was greater in IVDs (18.5 ± 23.9%) when compared to VBs (8.3 ± 9.2%) (P < 0.05) by third scans. Despite this, 77% of patients demonstrated the majority (> 50%) of their coronal curvature was attributed to VB wedging when measured across all three scans. Regardless of progression status, scan number, or region, the sum of the VB wedging angle was greater than the sum of the IVD wedging angle (all P ≤ 0.05). There was no correlation between the rates of major curve angle progression and standing height increase, VB height growth, or IVD height growth (P > 0.05). CONCLUSIONS: VB wedging contributed more to the lateral deformity observed in primary thoracic subtypes of AIS patients than IVD wedging. While IVDs demonstrated the greatest asymmetric deformity, their relatively smaller height resulted in a smaller proportional change in lateral curve angle compared to the VBs. LEVEL OF EVIDENCE: IV.


Asunto(s)
Disco Intervertebral/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Escoliosis/diagnóstico por imagen , Vértebras Torácicas/anomalías , Vértebras Torácicas/diagnóstico por imagen , Adolescente , Niño , Estudios Transversales , Femenino , Humanos , Disco Intervertebral/crecimiento & desarrollo , Masculino , Vértebras Torácicas/crecimiento & desarrollo
8.
Clin Biomech (Bristol, Avon) ; 74: 73-78, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32145672

RESUMEN

BACKGROUND: Adolescent idiopathic scoliosis is a common condition affecting 2.5% of the general population. Vertebral body stapling was introduced as a method of fusionless growth modulation for the correction of moderate idiopathic scoliosis (Cobb angles of 20-40°), and was claimed to be more effective than bracing and less invasive than fusion. The aim of this study was to assess the effect of vertebral body stapling on the stiffness of a thoracic motion segment unit under moment controlled load, and to assess the vertebral structural damage caused by the staples. METHODS: Thoracic spine motion segments from 6 to 8 week old calves (n=14) were tested in flexion/extension, lateral bending, and axial rotation. The segments were tested un-instrumented, then a left anterolateral intervertebral Shape Memory Alloy (SMA) staple was inserted and the test was repeated. Data were collected from the tenth load cycle of each sequence and stiffness was calculated. The staples were carefully removed and the segments were studied with micro-computed tomography to assess physical damage to the bony structure. Visual assessment of the vertebral bone structure on micro-CT was performed. FINDINGS: There was no change in motion segment stiffness in flexion/extension nor in axial rotation. There was a reduction in stiffness in lateral bending with 30% reduction bending away from the staple and 12% reduction bending towards the staple. Micro-CT showed physeal damage in all the specimens. INTERPRETATION: Intervertebral stapling using SMA staples cause a reduction in spine stiffness in lateral bending. They also cause damage to the endplate epiphyses.


Asunto(s)
Fenómenos Mecánicos , Cuerpo Vertebral/fisiología , Adolescente , Animales , Fenómenos Biomecánicos , Bovinos , Humanos , Rotación , Suturas , Cuerpo Vertebral/anatomía & histología , Cuerpo Vertebral/diagnóstico por imagen , Cuerpo Vertebral/cirugía , Soporte de Peso , Microtomografía por Rayos X
9.
PLoS One ; 14(9): e0222453, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31557174

RESUMEN

INTRODUCTION: 3D non-contact surface scanners capture highly accurate, calibrated images of surface topography for 3D structures. This study sought to establish the efficacy and accuracy of using 3D surface scanning to characterise spinal curvature and sagittal plane contour. METHODS: 10 healthy female adults with a mean age of 25 years, (standard deviation: 3.6 years) underwent both MRI and 3D surface scanning (3DSS) (Artec Eva, Artec Group Inc., Luxembourg) while lying in the lateral decubitus position on a rigid substrate. Prior to 3DSS, anatomical landmarks on the spinous processes of each participant were demarcated using stickers attached to the skin surface. Following 3DSS, oil capsules (fiducial markers) were overlaid on the stickers and the subject underwent MRI. MRI stacks were processed to measure the thoracolumbar spinous process locations, providing an anatomical reference. 3D coordinates for the markers (surface stickers and MRI oil capsules) and for the spinous processes mapped the spinal column profiles and were compared to assess the quality of fit between the 3DSS and MRI marker positions. RESULTS: The RMSE for the polynomials fit to the spinous process, fiducial and surface marker profiles ranged from 0.17-1.15mm for all subjects. The MRI fiducial marker location was well aligned with the spinous process profile in the thoracic and upper lumbar spine for nine of the subjects. Over the 10 subjects, the mean RMSE between the MRI and 3D scan sagittal profiles for all surface markers was 9.8mm (SD 4.2mm). Curvature was well matched for seven of the subjects, with two showing differing curvatures across the lumbar spine due to inconsistent subject positioning. CONCLUSION: Comparison of the observed trends for vertebral position measured from MRI and 3DSS, suggested the surface markers may provide a useful method for measuring internal changes in sagittal curvature or skeletal changes.


Asunto(s)
Imagen por Resonancia Magnética , Columna Vertebral/diagnóstico por imagen , Adulto , Puntos Anatómicos de Referencia/anatomía & histología , Puntos Anatómicos de Referencia/diagnóstico por imagen , Dorso/anatomía & histología , Dorso/diagnóstico por imagen , Femenino , Humanos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Curvaturas de la Columna Vertebral/diagnóstico por imagen , Columna Vertebral/anatomía & histología
10.
J Pediatr Orthop ; 38(10): e562-e571, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30199457

RESUMEN

BACKGROUND: A new growing rod (GR) design, the semiconstrained growing rod (SCGR), with the added advantage of axial rotation freedom within the components, has been introduced at our center which has been shown to be growth friendly. We hypothesize that the SCGR system would reduce autofusion in vivo, thereby maximizing the coronal plane correction, T1-S1 growth, and the final correction achieved at definitive fusion for children with an early onset scoliosis. METHODS: In total, 28 patients had either single or dual 5.5 mm diameter SCGR placed minimally invasively through a submuscular approach. Surgical lengthening procedures occurred approximately every 6 months until the definitive fusion procedure was performed for 18 patients. Scoliosis, kyphosis, and lordosis angles, T1-S1 trunk length, and any complications encountered were evaluated. RESULTS: For the full cohort, before GR insertion, the mean major Cobb curve angle was 72.4 degrees (SD, 18.8; range, 45 to 120), mean T1-S1 trunk length was 282 mm (SD, 59; range, 129 to 365), and at the latest follow-up (mean 6.9 y, SD 3.3, range 2.0 to 13.0), 38.8 degrees (SD, 17.5; range 10 to 90) and 377 mm (SD, 62; range, 225 to 487), respectively. For the subset of 18 patients who have had their final instrumented fusion surgery, the definitive surgery procedure alone produced a correction of the major Cobb curve angle by mean 20.3 degrees (SD, 16.1; P<0.0001), and an increase in the T1-S1 trunk length of mean 31.7 mm (SD, 23.1; P<0.0001). There were 14 complications involving 11 of the 28 patients, giving rise to 5 unplanned surgical interventions and 1 case where GR treatment was abandoned. CONCLUSIONS: SCGR patients exhibited statistically significant increase in T1-S1 trunk length and statistically significant decrease in the severity of scoliosis over the course of GR treatment and again, importantly, with the definitive fusion surgery, suggesting that autofusion had been minimized during GR treatment with relatively low complication rates. LEVEL OF EVIDENCE: Level IV-case series.


Asunto(s)
Fijadores Internos , Implantación de Prótesis/métodos , Escoliosis/cirugía , Adolescente , Niño , Femenino , Humanos , Cifosis/cirugía , Masculino , Estudios Prospectivos , Radiografía , Estudios Retrospectivos , Escoliosis/diagnóstico por imagen , Fusión Vertebral , Columna Vertebral/crecimiento & desarrollo , Columna Vertebral/cirugía , Resultado del Tratamiento
11.
Artículo en Inglés | MEDLINE | ID: mdl-28825043

RESUMEN

BACKGROUND: Axial vertebral rotation is a key characteristic of adolescent idiopathic scoliosis (AIS), and its reduction is one of the goals of corrective surgery. Recurrence of deformity after surgical correction may relate to rotation changes that occur in the anterior vertebral column after surgery, but whether any change occurs within the fused segment or in adjacent unfused levels following thoracoscopic anterior spinal fusion (TASF) is unknown. An analysis of measurements from an existing postoperative CT dataset was performed to investigate the occurrence of inter- and intra-vertebral rotation changes after TASF within and adjacent to the fused spinal segment and look for any relationships with the Cobb angle and rib hump in the two years after surgery. METHODS: 39 Lenke Type 1 main thoracic patients underwent TASF for progressive AIS and low dose computed tomography scanning of the instrumented levels of the spine at 6 and 24 months after surgery. Vertebral rotation was measured at the superior and inferior endplates on true axial images for all vertebral levels in the fused segment plus one adjacent level cranially and caudally. Intra-observer variability for rotation measurements was assessed using 95% limits of agreement to detect significant changes in inter/intra-vertebral rotation. RESULTS: Significant local changes in inter- and intra-vertebral rotation were found to have occurred between 6 and 24 months after anterior surgical fusion within the fused spinal segment, albeit with no consistent pattern of location or direction within the instrumented fusion construct. No significant en-bloc movement of the entire fused spinal segment relative to the adjacent un-instrumented cranial and caudal intervertebral levels was found. No clear correlation was found between any vertebral rotation changes and Cobb angle or rib hump measures. CONCLUSIONS: Localised inter- and intra-vertebral rotation occurs between 6 and 24 months after TASF, both within the instrumented spinal segments and in the adjacent un-instrumented levels of the adolescent spine. The lack of measurable en-bloc movement of the fused segment relative to the adjacent un-instrumented levels suggests that overall stability of the instrumented construct is achieved, however the vertebrae within the fusion mass continue to adapt and remodel, resulting in ongoing local anatomical and biomechanical changes in the adolescent spine.

12.
SAGE Open Med Case Rep ; 5: 2050313X17722726, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28835825

RESUMEN

OBJECTIVES: Lemierre's syndrome cause by methicillin-sensitive Staphylococcus aureus is rare, but can lead to necrotizing pneumonia and septicaemia. When treating such patient with extracorporeal life support source control can be both challenging and controversial. METHODS: In this report we present a 12 year old male who presented with Lemierre's syndrome from which he developed septic shock and severe necrotizing pneumonia. He also showed multiple pulmonary embolisms from the internal jugular vein thrombi, resulting in acute respiratory distress syndrome. RESULTS: The patient was treated with extracorporeal life support. Subsequent computed tomography revealed multiple abscesses throughout his lungs and around vertebral bodies C1 and C2, for which source control with drainage of the cervical abscesses was achieved while on extracorporeal life support. The necrotizing pneumonia gradually improved, and partial pneumectomy was avoided. He was successfully separated from extracorporeal life support and respiratory support and recovered from his illness. Follow-up imaging showed almost complete resolution of the pulmonary abscesses. Osteomyelitis of C1/C2 and severe muscle wasting required a prolonged hospital stay. CONCLUSION: This case highlights the challenges of supporting patients suffering from disseminated staphylococcal sepsis with extracorporeal life support and the key role of source control and demonstrates the value of using extracorporeal life support in necrotizing pneumonia.

13.
Spine (Phila Pa 1976) ; 42(12): 909-916, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28609321

RESUMEN

STUDY DESIGN: Lung volumes and thoracic anatomy were measured from low-dose computed tomography (CT) scans preoperatively and 2 years following thoracoscopic anterior spinal fusion (TASF) for adolescent idiopathic scoliosis (AIS). OBJECTIVE: The aim of this study was to assess changes in lung volume after TASF surgical correction. SUMMARY OF BACKGROUND DATA: AIS patients are known to have decreased pulmonary function as a consequence of their spinal and ribcage deformity. Several studies have evaluated changes in pulmonary function clinically after scoliosis correction surgery showing varied results. To date, there have been no published studies using CT to evaluate lung volume changes following TASF. METHODS: Twenty-three female AIS patients with both pre- and 2 years postoperative low-dose CT scans were selected from an ethically approved, historical databank. Three-dimensional lung volumes were reconstructed to determine anatomical lung volumes. Right and left lung volumes, total lung volume, and right-to-left lung volume ratio were obtained as well as hemithoracic symmetry, to indicate the extent of thorax deformity. Cobb angle, rib hump, levels fused in surgery, and patient height were used for correlation analysis with the lung volume results. RESULTS: Left lung volume, total lung volume, and hemithoracic ratio all increased significantly 2 years after surgery. There was no significant change in right-to-left lung volume ratio (P = 0.36). Statistical regression found significant positive correlation between lung volume changes, reduction in Cobb angle, increase in height, and improvement in hemithoracic symmetry ratio. CONCLUSION: TASF resulted in a statistically significant increase in lung volume following surgery, as well as improvement in the symmetry of the thoracic architecture; however, the postoperative lung volumes remained in the lower 50th percentile relative to females without thoracic deformity. Furthermore, change in lung volume was significantly correlated with changes in Cobb angle, hemithoracic asymmetry, and increased patient height, which are important consequences of thoracic deformity correction surgery. LEVEL OF EVIDENCE: 3.


Asunto(s)
Pulmón/diagnóstico por imagen , Escoliosis/cirugía , Fusión Vertebral/métodos , Vértebras Torácicas/cirugía , Toracoscopía , Tórax/diagnóstico por imagen , Adolescente , Femenino , Humanos , Imagenología Tridimensional , Pulmón/patología , Tamaño de los Órganos , Periodo Posoperatorio , Tórax/patología , Tomografía Computarizada por Rayos X
14.
Spine Deform ; 5(3): 172-180, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28449960

RESUMEN

BACKGROUND CONTEXT: In recent years, there has been increasing appreciation of the need to treat scoliosis as a three-dimensional deformity. PURPOSE: Assessment of surgical strategies and outcomes should consider not only the coronal plane correction but also derotation of the transverse plane deformity that can affect trunk appearance. STUDY DESIGN: This study included a cohort of 29 female adolescent idiopathic scoliosis patients who received thoracoscopic single rod anterior fusion (TASF) surgery. This study used pre- and postoperative low-dose computed tomographic (CT) scans to accurately measure apical axial vertebral rotation (AVR). METHODS: The pre- and postoperative values for clinically measured coronal Cobb correction and rib hump correction as well as AVR were compared to determine whether these values improved postoperatively. There are no conflicts of interest to report for authors of this investigation. RESULTS: As expected, statistically significant reductions in coronal Cobb angle (mean preoperative Cobb 51°, reducing to 24° at the two-year follow-up) and rib hump (mean preoperative rib hump 15°, reducing to 7° at two-year follow-up) were achieved. The mean reduction in apical AVR measured using CT was only 3° (mean preoperative AVR 16°, reducing to 13° at two-year follow-up), which was statistically but not clinically significant. Significant correlations were found between Cobb angle and rib hump, between Cobb angle and AVR, and between AVR and rib hump, suggesting that patients with greater coronal Cobb correction also achieve better derotation with this surgical procedure. CONCLUSIONS: The historical low-dose CT data set permitted detailed three-dimensional assessment of the deformity correction that is achieved using thoracoscopic anterior spinal fusion for progressive adolescent idiopathic scoliosis.


Asunto(s)
Evaluación de Resultado en la Atención de Salud/métodos , Escoliosis/diagnóstico por imagen , Fusión Vertebral/métodos , Toracoscopía/métodos , Tomografía Computarizada por Rayos X/métodos , Adolescente , Adulto , Niño , Femenino , Humanos , Periodo Posoperatorio , Periodo Preoperatorio , Rotación , Escoliosis/patología , Escoliosis/cirugía , Vértebras Torácicas/diagnóstico por imagen , Vértebras Torácicas/patología , Vértebras Torácicas/cirugía , Resultado del Tratamiento , Adulto Joven
15.
Spine Deform ; 5(3): 197-207, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28449963

RESUMEN

STUDY DESIGN: The aim of this study was to measure contributions of individual vertebra and disc wedging to coronal Cobb angle in the growing scoliotic spine using sequential magnetic resonance imaging (MRI). Clinically, the Cobb angle measures the overall curve in the coronal plane but does not measure individual vertebra and disc wedging. It was hypothesized that patients whose deformity progresses will have different patterns of coronal wedging in vertebrae and discs to those of patients whose deformities remain stable. METHODS: A group of adolescent idiopathic scoliosis (AIS) patients each received two to four MRI scans (spaced 3-12 months apart). The coronal plane wedge angles of each vertebra and disc in the major curve were measured for each scan, and the proportions and patterns of wedging in vertebrae and discs were analyzed for subgroups of patients whose spinal deformity did and did not progress during the study period. RESULTS: Sixteen patients were included in the study; the mean patient age was 12.9 years (standard deviation 1.7 years). All patients were classified as right-sided major thoracic Lenke Type 1 curves (9 type 1A, 4 type 1B, and 3 type 1C). Cobb angle progression of ≥5° between scans was seen in 56% of patients. Although there were measurable changes in the wedging of individual vertebrae and discs in all patients, there was no consistent pattern of deformity progression between patients who progressed and those who did not. The patterns of progression found in this study did not support the hypothesis of wedging commencing in the discs and then transferring to the vertebrae. CONCLUSION: Sequential MRI data showed complex patterns of deformity progression. Changes to the wedging of individual vertebrae and discs may occur in patients who have no increase in Cobb angle; therefore, the Cobb method alone may be insufficient to capture the complex mechanisms of deformity progression.


Asunto(s)
Imagenología Tridimensional/métodos , Disco Intervertebral/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Escoliosis/diagnóstico por imagen , Columna Vertebral/diagnóstico por imagen , Adolescente , Niño , Progresión de la Enfermedad , Femenino , Humanos , Disco Intervertebral/crecimiento & desarrollo , Disco Intervertebral/patología , Escoliosis/patología , Columna Vertebral/crecimiento & desarrollo , Columna Vertebral/patología
16.
Surg Radiol Anat ; 39(3): 281-291, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27272933

RESUMEN

PURPOSE: Cadaveric studies have previously documented a typical pattern of venous drainage within vertebral bodies (VBs), comprised primarily of the basivertebral vein. These studies, however, are limited by the number of samples available. MRI is able to provide 3D images of soft tissue structures in the spine, including the basivertebral vein without the use of contrast in both healthy controls and subjects with abnormal anatomy such as adolescent idiopathic scoliosis (AIS). This study aimed to quantify the venous networks within VBs of 15 healthy adolescent controls and 15 AIS patients. METHODS: Five transverse slices through the VBs were examined simultaneously and the observable vascular network traced. The length of the network on the left and right sides of the VB was calculated, and the spatial patterning assessed level-by-level within each subject. RESULTS: Significant differences were seen in the left/right distribution of vessels in both the control and AIS subjects, with both groups having greater length on the right side of all of their VBs. No difference was seen between AIS and control subjects in any region. Large individual variations in patterns were seen in both groups; however, the control group showed more consistent spatial patterning of the vascular networks across levels in comparison to the AIS group. CONCLUSION: The length of the basivertebral vein was seen to have a significant bias to the right hand side of the VB in both healthy and AIS adolescents. The spatial pattern of this vein showed large variations in branching both within and across individuals. No significant differences were seen between AIS and control subjects, suggesting both that this network is preserved in deformed AIS vertebrae, and that the vertebral venous system does not play a role in the etiology of AIS.


Asunto(s)
Variación Anatómica , Vértebras Lumbares/irrigación sanguínea , Escoliosis/diagnóstico por imagen , Vértebras Torácicas/irrigación sanguínea , Venas/anatomía & histología , Adolescente , Niño , Humanos , Imagenología Tridimensional , Vértebras Lumbares/diagnóstico por imagen , Imagen por Resonancia Magnética , Vértebras Torácicas/diagnóstico por imagen , Venas/diagnóstico por imagen
17.
J Pediatr ; 182: 315-320.e1, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27939256

RESUMEN

OBJECTIVE: To investigate whether growing rod surgery for children with progressive idiopathic early onset scoliosis (EOS) effects activity and participation, and investigate factors that may affect this. STUDY DESIGN: Multicenter retrospective cohort study using prospectively collected data on 60 children with idiopathic EOS and significant scoliosis (defined as a Cobb angle >40°). Thirty underwent brace treatment, and 30, growth rod surgery. Questionnaire and radiographic data were recorded at 1 year. The validated Activities Scale for Kids performance version (ASKp) questionnaire was used to measure activity and participation. RESULTS: In the brace group, Cobb angle increased from 60° to 68°. There was no change in ASKp score. In the operative group, Cobb angle decreased from 67° to 45°. ASKp decreased from 91 to 88 (P < .01). Presence of spinal pain correlated with greater reduction in activity and participation scores in both groups, as did occurrence of complications in the operative group (P < .05). Both treatments permitted growth of the immature spine. CONCLUSIONS: In children with significant idiopathic EOS (Cobb angle>40°), growth rod surgery was associated with a reduction in activity and participation and Cobb angle, whereas brace treatment was associated with an increase in Cobb angle and no change in activity and participation. Pain was the most important factor affecting activity and participation in both groups.


Asunto(s)
Tirantes/estadística & datos numéricos , Ejercicio Físico , Fijadores Internos/efectos adversos , Escoliosis/rehabilitación , Escoliosis/cirugía , Fusión Vertebral/métodos , Niño , Preescolar , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Crecimiento , Humanos , Masculino , Análisis Multivariante , Dimensión del Dolor/métodos , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/fisiopatología , Radiografía Torácica/métodos , Estudios Retrospectivos , Escoliosis/diagnóstico por imagen , Índice de Severidad de la Enfermedad , Fusión Vertebral/efectos adversos , Estadísticas no Paramétricas , Resultado del Tratamiento
18.
Clin Orthop Relat Res ; 475(3): 884-893, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27900714

RESUMEN

BACKGROUND: Adolescent idiopathic scoliosis is a complex three-dimensional deformity of the spine characterized by deformities in the sagittal, coronal, and axial planes. Spinal fusion using pedicle screw instrumentation is a widely used method for surgical correction in severe (coronal deformity, Cobb angle > 45°) adolescent idiopathic scoliosis curves. Understanding the anatomic difference in the pedicles of patients with adolescent idiopathic scoliosis is essential to reduce the risk of neurovascular or visceral injury through pedicle screw misplacement. QUESTIONS/PURPOSES: To use CT scans (1) to analyze pedicle anatomy in the adolescent thoracic scoliotic spine comparing concave and convex pedicles and (2) to assess the intra- and interobserver reliability of these measurements to provide critical information to spine surgeons regarding size, length, and angle of projection. METHODS: Between 2007 and 2009, 27 patients with adolescent idiopathic scoliosis underwent thoracoscopic anterior correction surgery by two experienced spinal surgeons. Preoperatively, each patient underwent a CT scan as was their standard of care at that time. Twenty-two patients (mean age, 15.7 years; SD, 2.4 years; range, 11.6-22 years) (mean Cobb angle, 53°; SD, 5.3°; range, 42°-63°) were selected. Inclusion criteria were a clinical diagnosis of adolescent idiopathic scoliosis, female, and Lenke type 1 adolescent idiopathic scoliosis with the major curve confined to the thoracic spine. Using three-dimensional image analysis software, the pedicle width, inner cortical pedicle width, pedicle height, inner cortical pedicle height, pedicle length, chord length, transverse pedicle angle, and sagittal pedicle angles were measured. Randomly selected scans were remeasured by two of the authors and the reproducibility of the measurement definitions was validated through limit of agreement analysis. RESULTS: The concave pedicle widths were smaller compared with the convex pedicle widths at T7, T8, and T9 by 37% (3.44 mm ± 1.16 mm vs 4.72 mm ± 1.02 mm; p < 0.001; mean difference, 1.27 mm; 95% CI, 0.92 mm-1.62 mm), 32% (3.66 mm ± 1.00 mm vs 4.82 mm ± 1.10 mm; p < 0.001; mean difference, 1.16 mm; 95% CI, 0.84 mm-1.49 mm), and 25% (4.10 mm ± 1.57 mm vs 5.12 mm ± 1.17 mm; p < 0.001; mean difference, 1.02 mm; 95% CI, 0.66 mm-1.39 mm), respectively. The concave pedicle heights were smaller than the convex at T5 (9.43 mm ± 0.98 vs 10.63 mm ± 1.10 mm; p = 0.002; mean difference, 1.02 mm; 95% CI, 0.59 mm-1.45 mm), T6 (8.87 mm ± 1.37 mm vs 10.88 mm ± 0.81 mm; p < 0.001; mean difference, 2.02 mm; 95% CI, 1.40 mm-2.63 mm), T7 (9.09 mm ± 1.24 mm vs 11.35 mm ± 0.84 mm; p < 0.001; mean difference, 2.26 mm; 95% CI, 1.81 mm-2.72 mm), and T8 (10.11 mm ± 1.05 mm vs 11.86 mm ± 0.88 mm; p < 0.001; mean difference, 1.75 mm; 95% CI, 1.30 mm-2.19 mm). Conversely, the concave transverse pedicle angle was larger than the convex at levels T6 (11.37° ± 4.48° vs 8.82° ± 4.31°; p = 0.004; mean difference, 2.54°; 95% CI, 1.10°-3.99°), T7 (12.69° ± 5.93° vs 8.65° ± 3.79°; p = 0.002; mean difference, 4.04°; 95% CI, 1.90°-6.17°), T8 (13.24° ± 5.28° vs 7.66° ± 4.87°; p < 0.001; mean difference, 5.58°; 95% CI, 2.99°-8.17°), and T9 (19.95° ± 5.69° vs 8.21° ± 4.02°; p < 0.001; mean difference, 4.74°; 95% CI, 2.68°-6.80°), indicating a more posterolateral to anteromedial pedicle orientation. CONCLUSIONS: There is clinically important asymmetry in the morphologic features of pedicles in individuals with adolescent idiopathic scoliosis. The concave side of the curve compared with the convex side is smaller in height and width periapically. Furthermore, the trajectory of the pedicle is more acute on the convex side of the curve compared with the concave side around the apex of the curve. Knowledge of these anatomic variations is essential when performing scoliosis correction surgery to assist with selecting the correct pedicle screw size and trajectory of insertion to reduce the risk of pedicle wall perforation and neurovascular injury.


Asunto(s)
Tomografía Computarizada Multidetector , Escoliosis/diagnóstico por imagen , Columna Vertebral/diagnóstico por imagen , Adolescente , Puntos Anatómicos de Referencia , Niño , Bases de Datos Factuales , Humanos , Imagenología Tridimensional , Variaciones Dependientes del Observador , Tornillos Pediculares , Valor Predictivo de las Pruebas , Interpretación de Imagen Radiográfica Asistida por Computador , Reproducibilidad de los Resultados , Escoliosis/cirugía , Índice de Severidad de la Enfermedad , Programas Informáticos , Fusión Vertebral/instrumentación , Columna Vertebral/cirugía , Toracoscopía , Adulto Joven
19.
Spine Deform ; 4(3): 182-192, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27927501

RESUMEN

PURPOSE: The dimensions of the thoracic intervertebral foramen in adolescent idiopathic scoliosis (AIS) have not previously been quantified. Better understanding of the dimensions of the foramen may be useful in surgical planning. This study describes a reproducible method for measurement of the thoracic foramen in AIS using computed tomography (CT). METHODS: In 23 preoperative female patients with Lenke 1 type AIS with right-side convexity major curves confined to the thoracic spine the foraminal height (FH), foraminal width (FW), pedicle to superior articular process distance (P-SAP), and cross-sectional foraminal area (FA) were measured using multiplanar reconstructed CT. Measurements were made at entrance, midpoint, and exit of the thoracic foramina from T1-T2 to T11-T12. Results were also correlated with dependent variables of major curve Cobb angle measured on X-ray and CT, age, weight, Lenke classification subtype, Risser grade, and number of spinal levels in the major curve. RESULTS: The FH, FW, P-SAP, and FA dimensions and ratios are all significantly larger on the convexity of the major curve and maximal at or close to the apex. Mean thoracic foraminal dimensions change in a predictable manner relative to position on the major thoracic curve. There was no statistically significant correlation with the measured foraminal dimensions or ratios and the individual dependent variables. The average ratio of convexity to concavity dimensions at the apex foramina for entrance, midpoint, and exit, respectively, are FH (1.50, 1.38, 1.25), FW (1.28, 1.30, 0.98), FA (2.06, 1.84, 1.32), and P-SAP (1.61, 1.47, 1.30). CONCLUSION: Foraminal dimensions of the thoracic spine are significantly affected by AIS. Foraminal dimensions have a predictable convexity-to-concavity ratio relative to the proximity to the major curve apex. Surgeons should be aware of these anatomical differences during scoliosis correction surgery.


Asunto(s)
Escoliosis/diagnóstico por imagen , Columna Vertebral/anatomía & histología , Tomografía Computarizada por Rayos X , Adolescente , Estudios Transversales , Femenino , Humanos , Cifosis , Columna Vertebral/diagnóstico por imagen
20.
Scoliosis ; 10: 35, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26681978

RESUMEN

BACKGROUND: Adolescent Idiopathic Scoliosis is the most common type of spinal deformity, and whilst the isk of progression appears to be biomechanically mediated (larger deformities are more likely to progress), the detailed biomechanical mechanisms driving progression are not well understood. Gravitational forces in the upright position are the primary sustained loads experienced by the spine. In scoliosis they are asymmetrical, generating moments about the spinal joints which may promote asymmetrical growth and deformity progression. Using 3D imaging modalities to estimate segmental torso masses allows the gravitational loading on the scoliotic spine to be determined. The resulting distribution of joint moments aids understanding of the mechanics of scoliosis progression. METHODS: Existing low-dose CT scans were used to estimate torso segment masses and joint moments for 20 female scoliosis patients. Intervertebral joint moments at each vertebral level were found by summing the moments of each of the torso segment masses above the required joint. RESULTS: The patients' mean age was 15.3 years (SD 2.3; range 11.9-22.3 years); mean thoracic major Cobb angle 52(°) (SD 5.9(°); range 42-63(°)) and mean weight 57.5 kg (SD 11.5 kg; range 41-84.7 kg). Joint moments of up to 7 Nm were estimated at the apical level. No significant correlation was found between the patients' major Cobb angles and apical joint moments. CONCLUSIONS: Patients with larger Cobb angles do not necessarily have higher joint moments, and curve shape is an important determinant of joint moment distribution. These findings may help to explain the variations in progression between individual patients. This study suggests that substantial corrective forces are required of either internal instrumentation or orthoses to effectively counter the gravity-induced moments acting to deform the spinal joints of idiopathic scoliosis patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...