Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(7): 5886, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36728186

RESUMEN

Correction for 'Insight at the atomic scale of corrosion inhibition: DFT study of 8-hydroxyquinoline on oxidized aluminum surfaces' by Fatah Chiter et al., Phys. Chem. Chem. Phys., 2023, https://doi.org/10.1039/d2cp04626a.

2.
Phys Chem Chem Phys ; 25(5): 4284-4296, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36688480

RESUMEN

8-Hydroxyquinoline (8-HQ) is a promising organic molecule for the corrosion protection of aluminum and its alloys in the replacement of chromate salts. On the aluminum surface, the presence of an oxide layer naturally formed can influence the inhibition efficiency which depends on molecule-surface interactions. In the present study, we performed quantum chemical calculations on native 8-HQ, tautomer and 8-Q (deprotonated, H-abstracted or radical) molecules, adsorbed on an oxidized aluminum surface (γ-Al2O3(111)/Al(111)). All species have the ability to interact strongly with the oxidized aluminum surface and can form stable and dense organic films. The bonding strength of different species of 8-HQ on oxidized aluminum surfaces is more favorable for 8-Q and tautomer species than for the native 8-HQ molecule. On the surface, the native 8-HQ molecule is physisorbed, forming H-bonds, in contrast to the tautomer and 8-Q species that show the predominance of chemisorption modes, involving both H-bonds and covalent bonds at the molecule/substrate interface. The dispersion energy significantly contributes to the adsorption mechanism and increases with increasing molecular surface coverage, due to attractive molecule-molecule interactions. Regardless of surface coverage and considered reaction mechanisms, the 8-Q species is able to enhance the stability of all aluminum sites, and thus to slow down the anodic reaction. In contrast, the native molecule and the tautomeric form have no significant effect or even weakened the stability of aluminum surface atoms.

3.
Inorg Chem ; 61(19): 7274-7285, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35485936

RESUMEN

Amine ligands are expected to drive the organization of metallic centers as well as the chemical reactivity of silver clusters early growing during the very first steps of the synthesis of silver nanoparticles via an organometallic route. Density functional theory (DFT) computational studies have been performed to characterize the structure, the atomic charge distribution, and the planar two-dimensional (2D)/three-dimensional (3D) relative stability of small-size silver clusters (Agn, 2 ≤ n ≤ 7), with or without an ethylamine (EA) ligand coordinated to the Ag clusters. The transition from 2D to 3D structures is shifted from n = 7 to 6 in the presence of one EA coordinating ligand, and it is explained from the analysis of the Ag-N and Ag-Ag bond energies. For fully EA saturated silver clusters (Agn-EAn), the effect on the 2D/3D transition is even more pronounced with a shift between n = 4 and 5. Subsequent electron localization function (ELF) and quantum theory of atoms in molecules (QTAIM) topological analyses allow for the fine characterization of the dative Ag-N and metallic Ag-Ag bonds, both in nature and in strength. Electron transfer from ethylamine to the coordinated silver atoms induces an increase of the polarization of the metallic core.

4.
Inorg Chem ; 59(24): 17916-17928, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33342215

RESUMEN

The reactivity of hydroxyquinoline derivatives (native molecules (Hq) and modified species (HqX, X = Br, SO3H, or SO3-)) is investigated either (i) with aluminum cations for the formation of chelates or (ii) with aluminum surfaces for their adsorption properties, in the framework of the dispersion-corrected Density Functional Theory (DFT-D). It is shown that the substituent X has no influence on the complexation to the aluminum cation of the deprotonated active form, i.e., the one exhibiting a phenolate moiety and referred to as q- for the native Hq and qXn- (n = 1 or 2) for its derivatives. The formation energies of the Alq3 and Al(qX)3 complexes, taking values of -60.87 ± 3.10 eV in vacuum and -24.30 ± 0.29 eV in water, are indicative of a strong chelating affinity of the q- and qXn- (n = 1 or 2) anions for the aluminum cations. ELF and QTAIM topological analyses on these complexes evidence that the bonding of the deprotonated species with the Al3+ ion is ionic with a very weak covalence degree. The para or ortho substituent X of the phenolate moiety of the qXn- (n = 1 or 2) derivatives modifies the electronic structure only locally and thus does not influence their O- or N-coordinating properties. The adsorption properties of the latter on an Al(111) surface have also been studied within periodic DFT-D calculations. The adsorbed species are strongly interacting with the Al(111) surface, as shown by the value of the adsorption energy of -3.69 ± 0.21 eV for the most stable geometries. Various adsorption modes of the q- and qXn- (n = 1 or 2) derivatives are characterized on the Al surface, depending on stabilizing or destabilizing interactions with the substituents X. On the basis of QTAIM descriptors, the bonding of the hydroxyquinoline species on the aluminum surface is characterized as ionic with a weak covalent character.

5.
ACS Appl Mater Interfaces ; 12(51): 57649-57665, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33306361

RESUMEN

A metal-polymer interface is pertinent to numerous technological applications, especially in spatial sectors. The focus of this work is to elaborate on the metallization process of the poly-epoxy surface with aluminum thin films, using atomistic details. To this end, X-ray photoelectron spectroscopy (XPS) under ultrahigh vacuum and density functional theory calculations are employed. The interfacial bonding between Al atoms and the poly-epoxide surface, represented by a dimer model, is studied by determining adsorption energies and by simulating XPS spectra. The latter simulations are mainly performed using the ΔKS method, taking into account the initial and the final state effects. Simulated atom-by-atom metal deposition on model epoxy systems is attempted to further elucidate energetics of metallization and preferential arrangement of metal atoms at the interface. A fair agreement obtained between XPS experiments and computations rationalizes the interaction mechanism at the atomic scale explaining the formation of the Al/poly-epoxy interface. Electronic structure properties highlight the charge transfer from the Al atom(s) to dehydrogenated model epoxy system.

6.
Phys Chem Chem Phys ; 20(33): 21474-21486, 2018 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-30088499

RESUMEN

8-Hydroxyquinoline (8HQ) is a new green corrosion inhibitor. DFT-D calculations are performed to investigate the adsorption of 8HQ and derivatives on the Al(111) surface from low to high coverage. From θ = 0.20 to 0.66, the adsorption energies are -1.12, -2.41, -1.66 and -3.44 eV per molecule for 8HQ, and its tautomer, its hydrogenated and its dehydrogenated species, independently of the coverage. In contrast, the geometry of the adsorbates changes between coverage up to 0.66 and the full monolayer (θ = 1). The creation of a dipole at the molecule/metal interface reduces the work function of aluminum. To further evaluate the modification of the reactivity of the surface, adsorption of O2 on the Al(111) surface covered by the organic layer is investigated. O2 dissociation takes place for θ = 0.66. When the Al surface is fully covered (θ = 1), the reduction of O2 and the oxidation of Al atoms do not occur.

7.
Phys Chem Chem Phys ; 17(34): 22243-58, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26243038

RESUMEN

The 8-hydroxyquinoline (8-HQ) molecule is an efficient corrosion inhibitor for aluminum and is also used in organic electronic devices. In this paper, the adsorption modes of 8-HQ and its derivatives (tautomer, dehydrogenated and hydrogenated species) on the Al(111) surface are characterized using dispersion corrected density functional theory calculations. The 8-HQ molecule is physisorbed and is chemisorbed on the aluminum surface with similar adsorption energy (-0.86 eV to -1.11 eV) and these adsorption modes are stabilized by vdW interactions. The binding of the dehydrogenated species is the strongest one (adsorption energy of -3.27 eV to -3.45 eV), followed by the tautomer molecule (-2.16 eV to -2.39 eV) and the hydrogenated molecule (-1.71 eV) that bind weaker. In all the chemisorbed configurations there is a strong electronic transfer from the Al substrate to the adsorbate (0.72 e to 2.16 e). The adsorbate is strongly distorted and its deformation energy is high (0.55 eV to 2.77 eV). The analysis of the projected density of states onto the orbitals of the molecule and the electronic density variation upon adsorption (Δρ) between the molecule and the surface account for covalent bonding.

8.
J Phys Chem B ; 114(30): 9848-53, 2010 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-20666525

RESUMEN

We study structural analogues of endoperoxides belonging to the family of G factors which present moderate to good antimalarial activity. Their biological activity is related to the reduction and cleavage of the O-O bond. Generally, the O-O bond reduction of model endoperoxides, as well as artemisinin, occurs by a concerted dissociative electron transfer (ET) mechanism. For the G3 and G3Me compounds, the experimental counterpart indicates an unexpected competition between a concerted and a stepwise mechanism, but no intermediate species can be isolated. We thus perform DFT studies on the reduction of G3 and G3Me compounds. We confirm the formation of an intermediate radical anion followed by cleavage of the O-O bond in a second step. We characterize the stable conformations for the radical anions G(3)(*-) and G(3)Me(*-) resulting from the ET and the associated reaction pathway. We also calculate the reorganization energy upon ET in relation to the Marcus theory using the DFT method. These results provide valuable insight into understanding the biological activity of G-factor endoperoxides as potential therapeutic antimalarial agents.


Asunto(s)
Antimaláricos/química , Peróxidos/química , Artemisininas/química , Transporte de Electrón , Modelos Teóricos , Oxidación-Reducción , Teoría Cuántica
9.
J Mol Model ; 14(7): 571-80, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18478282

RESUMEN

An extension of the anisotropic united atoms intermolecular potential model is proposed for nitriles. The electrostatic part of the intermolecular potential is calculated using atomic charges obtained by a simple Mulliken population analysis. The repulsion-dispersion interaction parameters for methyl and methylene groups are taken from transferable AUA4 literature parameters [Ungerer et al., J. Chem. Phys., 2000, 112, 5499]. Non-bonding Lennard-Jones intermolecular potential parameters are regressed for the carbon and nitrogen atoms of the nitrile group (-C[triple bound] N) from experimental vapor-liquid equilibrium data of acetonitrile. Gibbs Ensemble Monte Carlo simulations and experimental data agreement is very good for acetonitrile, and better than previous molecular potential proposed by Hloucha et al. [J. Chem. Phys., 2000, 113, 5401]. The transferability of the resulting potential is then successfully tested, without any further readjustment, to predict vapor-liquid phase equilibrium of propionitrile and n-butyronitrile.


Asunto(s)
Modelos Moleculares , Nitrilos/química , Anisotropía , Simulación por Computador , Modelos Químicos , Conformación Molecular , Peso Molecular , Método de Montecarlo , Electricidad Estática , Termodinámica , Volatilización
10.
Chemistry ; 13(4): 1174-9, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17066391

RESUMEN

The reduction of the bicyclic G-factor endoperoxides G3 and G3Me was studied in N,N-dimethylformamide using cyclic voltammetry and convolution analysis. Electron transfer leads to irreversible cleavage of the O--O bond. Detailed analysis of the voltammetry curves reveals a non-linear dependence on the transfer coefficient indicating a mechanistic transition from a stepwise mechanism to one with more concerted character with increasing potential. By using quantum calculations to estimate the O--O bond dissociation energies, the experimental data was used to evaluate the standard reduction potentials and other pertinent thermochemical information.

11.
J Chem Theory Comput ; 3(3): 878-84, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-26627407

RESUMEN

We report a density-functional study of some properties of the dissociative interaction of hydrogen and oxygen molecules on small palladium clusters (n = 5, 7, and 10). The calculated physisorption and chemisorption energies are compared with those of the infinite (111) palladium surface. First, adsorption of atomic hydrogen and oxygen is investigated on the Pd5, Pd7, and Pd10 clusters. Second, the interaction between H2 (O2) and the small Pd5 cluster is examined and compared to the process occurring on an infinite (111) surface. Finally, the simultaneous adsorption of two hydrogen (oxygen) atoms is analyzed in detail. As shown in a previous work, the binding energy of the first hydrogen (oxygen) atom does not depend significantly on the cluster size, and small two-layer clusters (n ≤ 10) can be used to determine with accuracy the interaction of atomic adsorbates with an infinite (111) palladium surface. In this study, we show that the dissociative chemisorption of H2 and more especially of O2 on a small palladium cluster may lead to erroneous binding energy: the cluster's size may prevent an accurate description of the adsorbate-adsorbate interaction as a function of their distance. It is demonstrated that a good choice of both the size and the shape of the cluster is preponderant for a good description of the dissociative adsorption of H2 and O2 on an infinite (111) surface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...