Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Vis Exp ; (179)2022 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-35156664

RESUMEN

DILI is a major cause of attrition in drug development with over 1000 FDA-approved drugs known to potentially cause DILI in humans. Unfortunately, DILI is often not detected until drugs have reached clinical stages, risking patients' safety and leading to substantial losses for the pharma industry. Taking into account that standard 2D models have limitations in detecting DILI it is essential to develop in vitro models that are more predictive to improve data translatability. To understand causality and mechanistic aspects of DILI in detail, a human liver MPS consisting of human primary liver parenchymal and non-parenchymal cells (NPCs) and cultured in 3D microtissues on an engineered scaffold under perfusion has been developed. Cryopreserved primary human hepatocytes (PHHs) and Kupffer cells (HKCs) were cocultured as microtissues in the MPS platform for up to two weeks, and each compound of interest was repeatably dosed onto liver microtissues at seven test concentrations for up to four days. Functional liver-specific endpoints were analyzed (including clinical biomarkers such as alanine aminotransferase, ALT) to evaluate liver function. Acute and chronic exposure to compounds of various DILI severities can be assessed by comparing responses to single and multi-dosed microtissues. The methodology has been validated with a broad set of severe and mildly hepatotoxic compounds. Here we show the data for pioglitazone and troglitazone, well-known hepatotoxic compounds withdrawn from the market for causing liver failures. Overall, it has been shown that the liver MPS model can be a useful tool to assess DILI and its association with changes in hepatic function. The model can additionally be used to assess how novel compounds behave in distinct patient subsets and how toxicity profiles may be affected by liver disease states (e.g., viral hepatitis, fatty liver disease).


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Alanina Transaminasa , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Hepatocitos , Humanos , Macrófagos del Hígado , Hígado
2.
Genome Res ; 26(1): 130-9, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26560630

RESUMEN

We have generated an improved assembly and gene annotation of the pig X Chromosome, and a first draft assembly of the pig Y Chromosome, by sequencing BAC and fosmid clones from Duroc animals and incorporating information from optical mapping and fiber-FISH. The X Chromosome carries 1033 annotated genes, 690 of which are protein coding. Gene order closely matches that found in primates (including humans) and carnivores (including cats and dogs), which is inferred to be ancestral. Nevertheless, several protein-coding genes present on the human X Chromosome were absent from the pig, and 38 pig-specific X-chromosomal genes were annotated, 22 of which were olfactory receptors. The pig Y-specific Chromosome sequence generated here comprises 30 megabases (Mb). A 15-Mb subset of this sequence was assembled, revealing two clusters of male-specific low copy number genes, separated by an ampliconic region including the HSFY gene family, which together make up most of the short arm. Both clusters contain palindromes with high sequence identity, presumably maintained by gene conversion. Many of the ancestral X-related genes previously reported in at least one mammalian Y Chromosome are represented either as active genes or partial sequences. This sequencing project has allowed us to identify genes--both single copy and amplified--on the pig Y Chromosome, to compare the pig X and Y Chromosomes for homologous sequences, and thereby to reveal mechanisms underlying pig X and Y Chromosome evolution.


Asunto(s)
Cromosomas de los Mamíferos/genética , Evolución Molecular , Porcinos/genética , Cromosoma X/genética , Cromosoma Y/genética , Animales , Secuencia de Bases , Gatos/genética , Perros/genética , Femenino , Conversión Génica , Expresión Génica , Biblioteca de Genes , Orden Génico , Humanos , Masculino , Datos de Secuencia Molecular , Alineación de Secuencia , Análisis de Secuencia de ADN
3.
BMC Genomics ; 16: 442, 2015 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-26055083

RESUMEN

BACKGROUND: Amplified gene families on sex chromosomes can harbour genes with important biological functions, especially relating to fertility. The Y-linked heat shock transcription factor (HSFY) family has become amplified on the Y chromosome of the domestic pig (Sus scrofa), in an apparently independent event to an HSFY expansion on the Y chromosome of cattle (Bos taurus). Although the biological functions of HSFY genes are poorly understood, they appear to be involved in gametogenesis in a number of mammalian species, and, in cattle, HSFY gene copy number may correlate with levels of fertility. RESULTS: We have investigated the HSFY family in domestic pig, and other suid species including warthog, bushpig, babirusa and peccaries. The domestic pig contains at least two amplified variants of HSFY, distinguished predominantly by presence or absence of a SINE within the intron. Both these variants are expressed in testis, and both are present in approximately 50 copies each in a single cluster on the short arm of the Y. The longer form has multiple nonsense mutations rendering it likely non-functional, but many of the shorter forms still have coding potential. Other suid species also have these two variants of HSFY, and estimates of copy number suggest the HSFY family may have amplified independently twice during suid evolution. CONCLUSIONS: The HSFY genes have become amplified in multiple species lineages independently. HSFY is predominantly expressed in testis in domestic pig, a pattern conserved with cattle, in which HSFY may play a role in fertility. Further investigation of the potential associations of HSFY with fertility and testis development may be of agricultural interest.


Asunto(s)
Expansión de las Repeticiones de ADN , Porcinos/genética , Factores de Transcripción/genética , Cromosoma Y/genética , Animales , Codón sin Sentido , Amplificación de Genes , Masculino , Familia de Multigenes , Elementos de Nucleótido Esparcido Corto , Sus scrofa , Porcinos/clasificación , Testículo/metabolismo , Factores de Transcripción/metabolismo
4.
BMC Genet ; 14: 3, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23320497

RESUMEN

BACKGROUND: Sex chromosomes are subject to evolutionary pressures distinct from the remainder of the genome, shaping their structure and sequence content. We are interested in the sex chromosomes of domestic pigs (Sus scrofa), how their structure and gene content compares and contrasts with other mammalian species, and the role of sex-linked genes in fertility. This requires an understanding of the XY-homologous sequence on these chromosomes.To this end, we performed microarray-based comparative genomic hybridisation (array-CGH) with male and female Duroc genomic DNA on a pig X-chromosome BAC tiling-path microarray. Putative XY-homologous BACs from regions of interest were subsequently FISH mapped. RESULTS: We show that the porcine PAR is approximately 6.5-6.9 Mb at the beginning of the short arm of the X, with gene content reflective of the artiodactyl common ancestor. Our array-CGH data also shows an XY-homologous region close to the end of the X long arm, spanning three X BACs. These BACs were FISH mapped, and paint the entire long arm of SSCY. Further clones of interest revealed X-autosomal homology or regions containing repetitive content. CONCLUSIONS: This study has identified regions of XY homology in the pig genome, and defined the boundary of the PAR on the X chromosome. This adds to our understanding of the evolution of the sex chromosomes in different mammalian lineages, and will prove valuable for future comparative genomic work in suids and for the construction and annotation of the genome sequence for the sex chromosomes. Our finding that the SSCYq repetitive content has corresponding sequence on the X chromosome gives further insight into structure of SSCY, and suggests further functionally important sequences remain to be discovered on the X and Y.


Asunto(s)
Homología de Secuencia de Ácido Nucleico , Sus scrofa/genética , Cromosoma X , Animales , Evolución Biológica , Hibridación Genómica Comparativa , Femenino , Fertilidad/genética , Masculino , Cromosoma Y
5.
Proc Natl Acad Sci U S A ; 106(10): 3829-34, 2009 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-19225104

RESUMEN

Using chromatin immunoprecipitation combined with genomic microarrays we have identified targets of No tail (Ntl), a zebrafish Brachyury ortholog that plays a central role in mesoderm formation. We show that Ntl regulates a downstream network of other transcription factors and identify an in vivo Ntl binding site that resembles the consensus T-box binding site (TBS) previously identified by in vitro studies. We show that the notochord-expressed gene floating head (flh) is a direct transcriptional target of Ntl and that a combination of TBSs in the flh upstream region are required for Ntl-directed expression. Using our genome-scale data we have assembled a preliminary gene regulatory network that begins to describe mesoderm formation and patterning in the early zebrafish embryo.


Asunto(s)
Proteínas Fetales/metabolismo , Redes Reguladoras de Genes , Mesodermo/embriología , Proteínas de Dominio T Box/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Animales , Secuencia de Bases , Sitios de Unión , Tipificación del Cuerpo/genética , Linaje de la Célula , Secuencia Conservada , Proteínas Fetales/genética , Gastrulación/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Datos de Secuencia Molecular , Músculos/citología , Unión Proteica , Proteínas de Dominio T Box/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
6.
Int J Dev Biol ; 53(1): 37-43, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19123125

RESUMEN

Members of the REEP (Receptor expression enhancing protein) family contain a TB2/DP1, HVA22 domain that is involved in intracellular trafficking and secretion. Consistent with the presence of this domain, REEP1 and REEP3 enhance the expression of odorant and taste receptors in mammals, while mutation of these genes causes defects in neural development. REEP4 was identified in the course of a functional antisense morpholino oligonucleotide screen searching for genes involved in the early development of Xenopus tropicalis: although over-expression of the gene causes no phenotype, embryos lacking REEP4 develop a slightly kinked body axis and are paralysed. At tailbud stages of development, REEP4 is expressed in the somites and neural tube. The paralysis observed in embryos lacking REEP4 might therefore be caused by defects in the nervous system or in muscle. To address this point, we examined the expression of various neural and muscle markers and found that although all are expressed normally at early stages of development, many are down regulated by the tailbud stage. This suggests that REEP4 plays a role in the maintenance of both the nervous system and the musculature.


Asunto(s)
Proteínas Anfibias/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Parálisis/embriología , Parálisis/metabolismo , Xenopus/anomalías , Xenopus/metabolismo , Secuencia de Aminoácidos , Proteínas Anfibias/química , Proteínas Anfibias/genética , Animales , Secuencia de Bases , Biomarcadores , Secuencia Conservada , Regulación hacia Abajo , Embrión no Mamífero/anomalías , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Datos de Secuencia Molecular , Desarrollo de Músculos , Parálisis/genética , Filogenia , Alineación de Secuencia , Xenopus/genética
7.
Mech Dev ; 123(9): 702-18, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16916602

RESUMEN

The Xenopus ectoderm consists of two populations of cells, superficial polarised epithelial cells and deep, non-epithelial cells. These two cell types differ in their developmental fate. In the neural ectoderm, primary neurons are derived only from the deep cells. In the epidermal ectoderm, superficial cells express high levels of differentiation markers, while most of the deep cells do not differentiate until later when they produce the stratified adult epidermis. However, few molecular differences are known between the deep and superficial cells. Here, we have undertaken a systematic approach to identify genes that show layer-restricted expression by microarray analysis of deep and superficial cells at the gastrula stage, followed by wholemount in situ hybridisation. We have identified 32 differentially expressed genes, of which 26 show higher expression in the superficial layer and 6 in the deep layer and describe their expression at the gastrula and neurula stage. One of the identified genes is the transcription factor Grhl3, which we found to be expressed in the superficial layer of the gastrula ectoderm and the neurula epidermis. By using markers identified in this work, we show that Grlh3 promotes superficial gene expression in the deep layer of the epidermis. Concomitantly, deep layer specific genes are switched off, showing that Grlh3 can promote deep cells to take on a superficial cell identity in the embryonic epidermis.


Asunto(s)
Factores de Transcripción/genética , Factores de Transcripción/fisiología , Proteínas de Xenopus/genética , Proteínas de Xenopus/fisiología , Xenopus laevis/embriología , Xenopus laevis/genética , Animales , Ciclo Celular , Proliferación Celular , Ectodermo/citología , Epidermis/embriología , Regulación del Desarrollo de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...