Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38967941

RESUMEN

PURPOSE OF THE REVIEW: Acute pancreatitis is a common acute inflammatory disorder of the pancreas, and its incidence has been increasing worldwide. Approximately 10% of acute pancreatitis progresses to severe acute pancreatitis (SAP), which carries significant morbidity and mortality. Disordered immune response to pancreatic injury is regarded as a key event that mediates systemic injury in SAP. In this article, we review recent developments in immune biomarkers of SAP and future directions for research. RECENT FINDINGS: Given the importance of the NLRP3-inflammasome pathway in mediating systemic inflammatory response syndrome and systemic injury, recent studies have investigated associations of SAP with systemic levels of activators of NLRP3, such as the damage associated molecular patterns (DAMPs) for the first time in human SAP. For example, circulating levels of histones, mitochondrial DNAs, and cell free DNAs have been associated with SAP. A panel of mechanistically relevant immune markers (e.g., panel of Angiopoeitin-2, hepatocyte growth factor, interleukin-8 (IL-8), resistin and sTNF-α R1) carried higher predictive accuracies than existing clinical scores and individual immune markers. Of the cytokines with established relevance to SAP pathogenesis, phase 2 trials of immunotherapies, including tumor necrosis factor (TNF)-alpha inhibition and stimulation of IL-10 production, are underway to determine if altering the immunologic response can reduce the severity of acute pancreatitis (AP). SUMMARY: Circulating systemic levels of various DAMPs and a panel of immune markers that possibly reflect activities of different pathways that drive SAP appear promising as predictive biomarkers for SAP. But larger multicenter studies are needed for external validation. Studies investigating immune cellular pathways driving SAP using immunophenotyping techniques are scarce. Interdisciplinary efforts are also needed to bring some of the promising biomarkers to the bedside for validation and testing for clinical utility. Studies investigating the role of and characterization of altered gut-lymph and gut-microbiota in severe AP are needed.

2.
J Immunol ; 212(11): 1680-1692, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38607278

RESUMEN

Plasmacytoid dendritic cells (pDCs) are strongly implicated as a major source of IFN-I in systemic lupus erythematosus (SLE), triggered through TLR-mediated recognition of nucleic acids released from dying cells. However, relatively little is known about how TLR signaling and IFN-I production are regulated in pDCs. In this article, we describe a role for integrin αvß3 in regulating TLR responses and IFN-I production by pDCs in mouse models. We show that αv and ß3-knockout pDCs produce more IFN-I and inflammatory cytokines than controls when stimulated through TLR7 and TLR9 in vitro and in vivo. Increased cytokine production was associated with delayed acidification of endosomes containing TLR ligands, reduced LC3 conjugation, and increased TLR signaling. This dysregulated TLR signaling results in activation of B cells and promotes germinal center (GC) B cell and plasma cell expansion. Furthermore, in a mouse model of TLR7-driven lupus-like disease, deletion of αvß3 from pDCs causes accelerated autoantibody production and pathology. We therefore identify a pDC-intrinsic role for αvß3 in regulating TLR signaling and preventing activation of autoreactive B cells. Because αvß3 serves as a receptor for apoptotic cells and cell debris, we hypothesize that this regulatory mechanism provides important contextual cues to pDCs and functions to limit responses to self-derived nucleic acids.


Asunto(s)
Autoinmunidad , Células Dendríticas , Integrina alfaVbeta3 , Lupus Eritematoso Sistémico , Ratones Noqueados , Transducción de Señal , Receptor Toll-Like 7 , Animales , Ratones , Células Dendríticas/inmunología , Integrina alfaVbeta3/inmunología , Integrina alfaVbeta3/metabolismo , Autoinmunidad/inmunología , Receptor Toll-Like 7/inmunología , Receptor Toll-Like 7/metabolismo , Receptor Toll-Like 7/genética , Lupus Eritematoso Sistémico/inmunología , Transducción de Señal/inmunología , Ratones Endogámicos C57BL , Citocinas/metabolismo , Citocinas/inmunología , Receptor Toll-Like 9/inmunología , Receptor Toll-Like 9/metabolismo , Linfocitos B/inmunología , Autoanticuerpos/inmunología , Glicoproteínas de Membrana/inmunología , Glicoproteínas de Membrana/metabolismo , Activación de Linfocitos/inmunología , Modelos Animales de Enfermedad
3.
Nat Commun ; 15(1): 2990, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582801

RESUMEN

The formation of extracellular DNA traps (ETosis) is a first response mechanism by specific immune cells following exposure to microbes. Initially characterized in vertebrate neutrophils, cells capable of ETosis have been discovered recently in diverse non-vertebrate taxa. To assess the conservation of ETosis between evolutionarily distant non-vertebrate phyla, we observed and quantified ETosis using the model ctenophore Mnemiopsis leidyi and the oyster Crassostrea gigas. Here we report that ctenophores - thought to have diverged very early from the metazoan stem lineage - possess immune-like cells capable of phagocytosis and ETosis. We demonstrate that both Mnemiopsis and Crassostrea immune cells undergo ETosis after exposure to diverse microbes and chemical agents that stimulate ion flux. We thus propose that ETosis is an evolutionarily conserved metazoan defense against pathogens.


Asunto(s)
Ctenóforos , Trampas Extracelulares , Animales , Ctenóforos/genética , Neutrófilos
4.
Sci Immunol ; 9(91): eabq6541, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38181093

RESUMEN

Pore-forming toxins (PFTs) are the largest class of bacterial toxins and contribute to virulence by triggering host cell death. Vertebrates also express endogenous pore-forming proteins that induce cell death as part of host defense. To mitigate damage and promote survival, cells mobilize membrane repair mechanisms to neutralize and counteract pores, but how these pathways are activated is poorly understood. Here, we use a transposon-based gene activation screen to discover pathways that counteract the cytotoxicity of the archetypal PFT Staphylococcus aureus α-toxin. We identify the endolysosomal protein LITAF as a mediator of cellular resistance to PFT-induced cell death that is active against both bacterial toxins and the endogenous pore, gasdermin D, a terminal effector of pyroptosis. Activation of the ubiquitin ligase NEDD4 by potassium efflux mobilizes LITAF to recruit the endosomal sorting complexes required for transport (ESCRT) machinery to repair damaged membrane. Cells lacking LITAF, or carrying naturally occurring disease-associated mutations of LITAF, are highly susceptible to pore-induced death. Notably, LITAF-mediated repair occurs at endosomal membranes, resulting in expulsion of damaged membranes as exosomes, rather than through direct excision of pores from the surface plasma membrane. These results identify LITAF as a key effector that links sensing of cellular damage to repair.


Asunto(s)
Toxinas Bacterianas , Piroptosis , Animales , Muerte Celular , Membrana Celular , Endosomas
5.
Adv Sci (Weinh) ; 10(30): e2302249, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37658522

RESUMEN

Super-resolution optical imaging tools are crucial in microbiology to understand the complex structures and behavior of microorganisms such as bacteria, fungi, and viruses. However, the capabilities of these tools, particularly when it comes to imaging pathogens and infected tissues, remain limited. MicroMagnify (µMagnify) is developed, a nanoscale multiplexed imaging method for pathogens and infected tissues that are derived from an expansion microscopy technique with a universal biomolecular anchor. The combination of heat denaturation and enzyme cocktails essential is found for robust cell wall digestion and expansion of microbial cells and infected tissues without distortion. µMagnify efficiently retains biomolecules suitable for high-plex fluorescence imaging with nanoscale precision. It demonstrates up to eightfold expansion with µMagnify on a broad range of pathogen-containing specimens, including bacterial and fungal biofilms, infected culture cells, fungus-infected mouse tone, and formalin-fixed paraffin-embedded human cornea infected by various pathogens. Additionally, an associated virtual reality tool is developed to facilitate the visualization and navigation of complex 3D images generated by this method in an immersive environment allowing collaborative exploration among researchers worldwide. µMagnify is a valuable imaging platform for studying how microbes interact with their host systems and enables the development of new diagnosis strategies against infectious diseases.


Asunto(s)
Bacterias , Microscopía , Humanos , Animales , Ratones , Microscopía/métodos , Imagen Óptica
7.
Eur Heart J Open ; 3(2): oead010, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36909248

RESUMEN

Aims: αv integrins are implicated in fibrosis in a number of organs through their ability to activate TGF-ß. However their role in vascular fibrosis and collagen accumulation is only partially understood. Here we have used αv conditional knockout mice and cell lines to determine how αv contributes to vascular smooth muscle cell (VSMC) function in vascular fibrosis and the role of TGF-ß in that process. Methods and results: Angiotensin II (Ang II) treatment causes upregulation of αv and ß3 expression in the vessel wall, associated with increased collagen deposition. We found that deletion of αv integrin subunit from VSMCs (αv SMKO) protected mice against angiotensin II-induced collagen production and assembly. Transcriptomic analysis of the vessel wall in αv SMKO mice and controls identified a significant reduction in expression of fibrosis and related genes in αv SMKO mice. In contrast, αv SMKO mice showed prolonged expression of CD109, which is known to affect TGF-ß signalling. Using cultured mouse and human VSMCs, we showed that overexpression of CD109 phenocopied knockdown of αv integrin, attenuating collagen expression, TGF-ß activation, and Smad2/3 signalling in response to angiotensin II or TGF-ß stimulation. CD109 and TGF-ß receptor were internalized in early endosomes. Conclusion: We identify a role for VSMC αv integrin in vascular fibrosis and show that αv acts in concert with CD109 to regulate TGF-ß signalling.

8.
Res Sq ; 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36945526

RESUMEN

Super-resolution optical imaging tools are crucial in microbiology to understand the complex structures and behavior of microorganisms such as bacteria, fungi, and viruses. However, the capabilities of these tools, particularly when it comes to imaging pathogens and infected tissues, remain limited. We developed µMagnify, a nanoscale multiplexed imaging method for pathogens and infected tissues that are derived from an expansion microscopy technique with a universal biomolecular anchor. We formulated an enzyme cocktail specifically designed for robust cell wall digestion and expansion of microbial cells without distortion while efficiently retaining biomolecules suitable for high-plex fluorescence imaging with nanoscale precision. Additionally, we developed an associated virtual reality tool to facilitate the visualization and navigation of complex three-dimensional images generated by this method in an immersive environment allowing collaborative exploration among researchers around the world. µMagnify is a valuable imaging platform for studying how microbes interact with their host systems and enables development of new diagnosis strategies against infectious diseases.

9.
J Allergy Clin Immunol ; 151(6): 1484-1493, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36708815

RESUMEN

BACKGROUND: Mast cells (MCs) within the airway epithelium in asthma are closely related to airway dysfunction, but cross talk between airway epithelial cells (AECs) and MCs in asthma remains incompletely understood. Human rhinovirus (RV) infections are key triggers for asthma progression, and AECs from individuals with asthma may have dysregulated antiviral responses. OBJECTIVE: We utilized primary AECs in an ex vivo coculture model system to examine cross talk between AECs and MCs after epithelial rhinovirus infection. METHODS: Primary AECs were obtained from 11 children with asthma and 10 healthy children, differentiated at air-liquid interface, and cultured in the presence of laboratory of allergic diseases 2 (LAD2) MCs. AECs were infected with rhinovirus serogroup A 16 (RV16) for 48 hours. RNA isolated from both AECs and MCs underwent RNA sequencing. Direct effects of epithelial-derived interferons on LAD2 MCs were examined by real-time quantitative PCR. RESULTS: MCs increased expression of proinflammatory and antiviral genes in AECs. AECs demonstrated a robust antiviral response after RV16 infection that resulted in significant changes in MC gene expression, including upregulation of genes involved in antiviral responses, leukocyte activation, and type 2 inflammation. Subsequent ex vivo modeling demonstrated that IFN-ß induces MC type 2 gene expression. The effects of AEC donor phenotype were small relative to the effects of viral infection and the presence of MCs. CONCLUSIONS: There is significant cross talk between AECs and MCs, which are present in the epithelium in asthma. Epithelial-derived interferons not only play a role in viral suppression but also further alter MC immune responses including specific type 2 genes.


Asunto(s)
Asma , Infecciones por Enterovirus , Infecciones por Picornaviridae , Niño , Humanos , Interferones , Rhinovirus/fisiología , Mastocitos/metabolismo , Epitelio/metabolismo , Células Epiteliales , Antivirales/farmacología , Inmunidad
10.
Autophagy ; 19(3): 926-942, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36016494

RESUMEN

Macroautophagy/autophagy proteins have been linked with the development of immune-mediated diseases including lupus, but the mechanisms for this are unclear due to the complex roles of these proteins in multiple immune cell types. We have previously shown that a form of noncanonical autophagy induced by ITGAV/alpha(v) integrins regulates B cell activation by viral and self-antigens, in mice. Here, we investigate the involvement of this pathway in B cells from human tissues. Our data reveal that autophagy is specifically induced in the germinal center and memory B cell subpopulations of human tonsils and spleens. Transcriptomic analysis show that the induction of autophagy is related to unique aspects of activated B cells such as mitochondrial metabolism. To understand the function of ITGAV/alpha(v) integrin-dependent autophagy in human B cells, we used CRISPR-mediated knockdown of autophagy genes. Integrating data from primary B cells and knockout cells, we found that ITGAV/alpha(v)-dependent autophagy limits activation of specific pathways related to B cell responses, while promoting others. These data provide new mechanistic links for autophagy and B-cell-mediated immune dysregulation in diseases such as lupus.


Asunto(s)
Autofagia , Integrina alfaV , Humanos , Animales , Ratones , Integrina alfaV/genética , Integrina alfaV/metabolismo , Transcriptoma , Linfocitos B/metabolismo , Mitocondrias/metabolismo
12.
Pancreas ; 51(6): 580-585, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36206462

RESUMEN

ABSTRACT: The association between acute pancreatitis (AP) and diabetes mellitus (DM) has long been established, with the initial descriptions of AP patients presenting with DM after a bout of AP published in the 1940s and 50s. However, the potential mechanisms involved, particularly those components related to the immune system, have not been well defined. The Diabetes RElated to Acute pancreatitis and its Mechanisms (DREAM) study is a multicenter clinical study designed to understand the frequency and phenotype of DM developing after AP. This article describes one objective of the DREAM study: to determine the immunologic mechanisms of DM after AP, including the contribution of ß-cell autoimmunity. This component of the study will assess the presence of islet autoimmunity, as well as the magnitude and kinetics of the innate and adaptive immune response at enrollment and during longitudinal follow-up after 1 or more episodes of AP. Finally, DREAM will evaluate the relationship between immune features, DM development, and pancreatitis etiology and severity.


Asunto(s)
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Pancreatitis , Enfermedad Aguda , Diabetes Mellitus Tipo 1/complicaciones , Humanos , Pancreatitis/complicaciones
13.
Am J Physiol Gastrointest Liver Physiol ; 323(5): G428-G438, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36098405

RESUMEN

Severe acute pancreatitis (SAP) is associated with substantial morbidity and mortality. Several cytokines have been identified to have pathophysiological significance in SAP, but studies characterizing their early trajectories are lacking. Here we characterize the early trajectories of seven key cytokines associated with SAP and compare them with non-SAP subjects. Five proinflammatory cytokines (angiopoietin-2, interleukin-6, interleukin-8, monocyte chemoattractant protein-1, resistin) and two anti-inflammatory cytokines (hepatocyte growth factor, and soluble tumor necrosis factor-α receptor-1A) were measured in a prospective cohort of acute pancreatitis subjects (2012-2016) at the time of enrollment and then every 24 h for 5 days or until discharge. The cytokines' levels and trajectories were calibrated based on date of pain onset and were compared between healthy controls and three severity categories (mild, moderate, and severe). The cohort (n = 170) consisted of 27 healthy controls, 65 mild, 38 moderate, and 40 SAP. From day 1 of symptom onset, SAP subjects exhibited significantly higher levels of both pro- and anti-inflammatory cytokines compared with non-SAP and healthy subjects. But in SAP subjects, all proinflammatory cytokines' levels trended downward after day 2 (except for a flat slope for angiopoeitin-2) whereas for non-SAP subjects, the trajectory was upward: this trajectory difference between SAP versus non-SAP subjects resulted in narrowing of the differences initially seen on day 1 for proinflammatory cytokines. For anti-inflammatory cytokines, the trajectories were uniformly upward for both SAP and non-SAP subjects. Proinflammatory cytokine response is an early and time-sensitive event in SAP that should be accounted for when designing future biomarker studies and/or therapeutic trials.NEW & NOTEWORTHY In this study, we showed that the proinflammatory cytokine response in SAP is an early event, with subsequent downregulation of proinflammatory cytokines beginning at day 1 of symptom onset. Our findings underscore the importance of enrolling subjects very early in the disease course when conducting studies to investigate early immune events of SAP; this current study also serves as an important reference for the design of future biomarker studies and therapeutic trials in SAP.


Asunto(s)
Pancreatitis , Humanos , Pancreatitis/complicaciones , Citocinas/metabolismo , Interleucina-6 , Interleucina-8 , Quimiocina CCL2 , Resistina , Factor de Crecimiento de Hepatocito/uso terapéutico , Angiopoyetina 2/uso terapéutico , Estudios Prospectivos , Factor de Necrosis Tumoral alfa/metabolismo , Enfermedad Aguda , Biomarcadores , Antiinflamatorios/uso terapéutico
15.
J Immunol ; 205(7): 1810-1818, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32859730

RESUMEN

Systemic lupus erythematosus (SLE) is defined by loss of B cell tolerance, resulting in production of autoantibodies against nucleic acids and other cellular Ags. Aberrant activation of TLRs by self-derived RNA and DNA is strongly associated with SLE in patients and in mouse models, but the mechanism by which TLR signaling to self-ligands is regulated remains poorly understood. In this study, we show that αv integrin plays a critical role in regulating B cell TLR signaling to self-antigens in mice. We show that deletion of αv from B cells accelerates autoantibody production and autoimmune kidney disease in the Tlr7.1 transgenic mouse model of SLE. Increased autoimmunity was associated with specific expansion of transitional B cells, extrafollicular IgG2c-producing plasma cells, and activation of CD4 and CD8 T cells. Our data show that αv-mediated regulation of TLR signaling in B cells is critical for preventing autoimmunity and indicate that loss of αv promotes escape from tolerance. Thus, we identify a new regulatory pathway in autoimmunity and elucidate upstream signals that adjust B cell activation to prevent development of autoimmunity in a mouse model.


Asunto(s)
Linfocitos B/fisiología , Integrina alfaV/metabolismo , Lupus Eritematoso Sistémico/inmunología , Glicoproteínas de Membrana/metabolismo , Receptor Toll-Like 7/metabolismo , Animales , Autoanticuerpos/metabolismo , Autoinmunidad , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Inmunoglobulina G/metabolismo , Inmunomodulación , Integrina alfaV/genética , Activación de Linfocitos , Glicoproteínas de Membrana/genética , Ratones , Ratones Transgénicos , Receptor Toll-Like 7/genética
16.
Science ; 370(6513): 241-247, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-32855215

RESUMEN

Recent outbreaks of Ebola virus (EBOV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have exposed our limited therapeutic options for such diseases and our poor understanding of the cellular mechanisms that block viral infections. Using a transposon-mediated gene-activation screen in human cells, we identify that the major histocompatibility complex (MHC) class II transactivator (CIITA) has antiviral activity against EBOV. CIITA induces resistance by activating expression of the p41 isoform of invariant chain CD74, which inhibits viral entry by blocking cathepsin-mediated processing of the Ebola glycoprotein. We further show that CD74 p41 can block the endosomal entry pathway of coronaviruses, including SARS-CoV-2. These data therefore implicate CIITA and CD74 in host defense against a range of viruses, and they identify an additional function of these proteins beyond their canonical roles in antigen presentation.


Asunto(s)
Antígenos de Diferenciación de Linfocitos B/fisiología , Betacoronavirus/fisiología , Infecciones por Coronavirus/inmunología , Ebolavirus/fisiología , Fiebre Hemorrágica Ebola/inmunología , Antígenos de Histocompatibilidad Clase II/fisiología , Interacciones Huésped-Patógeno/inmunología , Proteínas Nucleares/fisiología , Neumonía Viral/inmunología , Transactivadores/fisiología , Internalización del Virus , Antígenos de Diferenciación de Linfocitos B/genética , COVID-19 , Línea Celular Tumoral , Infecciones por Coronavirus/virología , Elementos Transponibles de ADN , Endosomas/virología , Pruebas Genéticas , Fiebre Hemorrágica Ebola/virología , Antígenos de Histocompatibilidad Clase II/genética , Interacciones Huésped-Patógeno/genética , Humanos , Proteínas Nucleares/genética , Pandemias , Neumonía Viral/virología , SARS-CoV-2 , Transactivadores/genética , Transcripción Genética
17.
Stem Cell Reports ; 15(2): 340-357, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32735820

RESUMEN

We earlier showed that outside-in integrin signaling through POSTN-ITGAV interaction plays an important role in regulating adult hematopoietic stem cell (HSC) quiescence. Here, we show that Itgav deletion results in increased frequency of phenotypic HSCs in fetal liver (FL) due to faster proliferation. Systemic deletion of Postn led to increased proliferation of FL HSCs, albeit without any loss of stemness, unlike Vav-Itgav-/- HSCs. Based on RNA sequencing analysis of FL and bone marrow HSCs, we predicted the involvement of DNA damage response pathways in this dichotomy. Indeed, proliferative HSCs from Postn-deficient FL tissues showed increased levels of DNA repair, resulting in lesser double-strand breaks. Thus POSTN, with its expression majorly localized in the vascular endothelium of FL tissue, acts as a regulator of stem cell pool size during development. Overall, we demonstrate that the duality of response to proliferation in HSCs is developmental stage dependent and can be correlated with DNA damage responses.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Feto/citología , Células Madre Hematopoyéticas/metabolismo , Integrina alfaV/metabolismo , Hígado/embriología , Transducción de Señal , Animales , Daño del ADN , Reparación del ADN , Endotelio Vascular/metabolismo , Eliminación de Gen , Integrina beta3/metabolismo , Ratones , Ratones Noqueados , Fenotipo
18.
PLoS One ; 15(7): e0232307, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32667911

RESUMEN

In the mammalian gut CD103+ve myeloid DCs are known to suppress inflammation threatened by luminal bacteria, but stimuli driving DC precursor maturation towards this beneficial phenotype are incompletely understood. We isolated CD11+ve DCs from mesenteric lymph nodes (MLNs) of healthy mice; CD103+ve DCs were 8-24 fold more likely than CD103-ve DCs to exhibit extensive of prior phagocytosis of apoptotic intestinal epithelial cells. However, CD103+ve and CD103-ve MLN DCs exhibited similar ex vivo capacity to ingest apoptotic cells, indicating that apoptotic cells might drive immature DC maturation towards the CD103+ve phenotype. When cultured with apoptotic cells, myeloid DC precursors isolated from murine bone marrow and characterised as lineage-ve CD103-ve, displayed enhanced expression of CD103 and ß8 integrin and acquired increased capacity to induce T regulatory lymphocytes (Tregs) after 7d in vitro. However, DC precursors isolated from αv-tie2 mice lacking αv integrins in the myeloid line exhibited reduced binding of apoptotic cells and complete deficiency in the capacity of apoptotic cells and/or latent TGF-ß1 to enhance CD103 expression in culture, whereas active TGF-ß1 increased DC precursor CD103 expression irrespective of αv expression. Fluorescence microscopy revealed clustering of αv integrin chains and latent TGF-ß1 at points of contact between DC precursors and apoptotic cells. We conclude that myeloid DC precursors can deploy αv integrin to orchestrate binding of apoptotic cells, activation of latent TGF-ß1 and acquisition of the immunoregulatory CD103+ve ß8+ve DC phenotype. This implies that a hitherto unrecognised consequence of apoptotic cell interaction with myeloid phagocytes is programming that prevents inflammation.


Asunto(s)
Antígenos CD/metabolismo , Apoptosis , Células Dendríticas/inmunología , Regulación de la Expresión Génica , Inmunomodulación , Cadenas alfa de Integrinas/metabolismo , Integrina alfaV/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Células Dendríticas/citología , Células Dendríticas/metabolismo , Femenino , Ratones Endogámicos C57BL , Células Mieloides/citología , Fagocitosis , Linfocitos T Reguladores/inmunología
19.
Am J Pathol ; 190(6): 1224-1235, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32201264

RESUMEN

Intratracheal instillation of apoptotic cells enhances resolution of experimental lung inflammation by incompletely understood mechanisms. We report that this intervention induces functional regulatory T lymphocytes (Tregs) in mouse lung experimentally inflamed by intratracheal administration of lipopolysaccharide. Selective depletion demonstrated that Tregs were necessary for maximal apoptotic cell-directed enhancement of resolution, and adoptive transfer of additional Tregs was sufficient to promote resolution without administering apoptotic cells. After intratracheal instillation, labeled apoptotic cells were observed in most CD11c+CD103+ myeloid dendritic cells migrating to mediastinal draining lymph nodes and bearing migratory and immunoregulatory markers, including increased CCR7 and ß8 integrin (ITGB8) expression. In mice deleted for αv integrin in the myeloid line to reduce phagocytosis of dying cells by CD103+ dendritic cells, exogenous apoptotic cells failed to induce transforming growth factor-ß1 expression or Treg accumulation and failed to enhance resolution of lipopolysaccharide-induced lung inflammation. We conclude that in murine lung, myeloid phagocytes encountering apoptotic cells can deploy αv integrin-mediated mechanisms to induce Tregs and enhance resolution of acute inflammation.


Asunto(s)
Apoptosis/fisiología , Integrina alfaV/metabolismo , Neumonía/metabolismo , Linfocitos T Reguladores/metabolismo , Traslado Adoptivo , Animales , Factores de Transcripción Forkhead/metabolismo , Activación de Linfocitos , Depleción Linfocítica , Ratones , Fagocitosis/fisiología , Neumonía/patología
20.
Science ; 366(6462)2019 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-31601741

RESUMEN

Epithelial resident memory T (eTRM) cells serve as sentinels in barrier tissues to guard against previously encountered pathogens. How eTRM cells are generated has important implications for efforts to elicit their formation through vaccination or prevent it in autoimmune disease. Here, we show that during immune homeostasis, the cytokine transforming growth factor ß (TGF-ß) epigenetically conditions resting naïve CD8+ T cells and prepares them for the formation of eTRM cells in a mouse model of skin vaccination. Naïve T cell conditioning occurs in lymph nodes (LNs), but not in the spleen, through major histocompatibility complex class I-dependent interactions with peripheral tissue-derived migratory dendritic cells (DCs) and depends on DC expression of TGF-ß-activating αV integrins. Thus, the preimmune T cell repertoire is actively conditioned for a specialized memory differentiation fate through signals restricted to LNs.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Células Dendríticas/inmunología , Memoria Inmunológica , Factor de Crecimiento Transformador beta/metabolismo , Animales , Movimiento Celular , Epidermis/inmunología , Integrina alfaV/genética , Integrina alfaV/metabolismo , Ganglios Linfáticos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Piel/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...