Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemistry ; 30(33): e202400570, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38597334

RESUMEN

Kinetic inertness of Mn(II)-based MRI contrast agents can be improved by increasing the rigidity of the polydentate ligand that tightly coordinate the metal ion. Taking inspiration from the remarkable increase in kinetic inertness of [Mn(CDTA)]2- compared to [Mn(EDTA)]2- due to the cyclohexyl backbone rigidity, we devised that bicyclic ligands would further improve the kinetic inertness of the Mn(II) complexes. The length of the alkyl bridge on the cyclohexane ring was varied from methylene (BCH-DTA), ethylene (BCO-DTA) to propylene (BCN-DTA) to evaluate the influence of the different trans-diaminotetraacetate ligands on relaxometric, thermodynamic and kinetic properties of the Mn(II) complexes. 1H and 17O NMR relaxometric studies showed a slight increase in relaxivity and a faster water exchange rate in these Mn(II)-complexes with respect to [Mn(CDTA)]2-. Solution studies revealed that the conditional stability (pMn) and dissociation half-life (t1/2) at pH 7.4 follow the order [Mn(BCH-DTA)]2-<[Mn(BCO-DTA)]2-<[Mn(BCN-DTA)]2- highlighting the effect of the bridge length on the overall stability of the Mn(II) complexes. Remarkably, [Mn(BCN-DTA)]2- shows an improved pMn value and a 7-times higher kinetic inertness than [Mn(CDTA)]2-. NMR studies on the Zn(II) analogues confirm the rigidity of the bicyclic complexes with an isomerization process at >313 K for the smaller bridged complex [Zn(BCH-DTA)]2-.

2.
Sci Total Environ ; 877: 162844, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36924971

RESUMEN

Gadolinium-based contrast agents (GBCAs) used in magnetic resonance imaging (MRI) are highly resistant in the environment. They pass through wastewater treatment plants (WWTPs) unhindered escaping degradation. Although GBCAs are subjects of intensive research, we recognized that a quantitative approach to the mass balance of gadolinium, based on known input and output data, is missing. The administered amount of Gd as GBCAs, the number of out- and inpatients and the concentration of rare earth elements (REEs) in wastewater were monitored for 45 days in a medium sized city (ca. 203,000 inhabitants) with two MRI centres. An advection-dispersion type model was established to describe the transport of Gd in the wastewater system. The model calculates with patient locality, excretion kinetics of Gd and the yield of wastewater. The estimated and measured daily amount of anthropogenic gadolinium released to the WWTP were compared. GBCAs (Omniscan and Dotarem) were administered to 1008 patients representing a total of 700 ± 1 g Gd. The amount of total Gd entering the WWTP was 531 ± 2 g, of which the anthropogenic contribution (i.e. GBCAs) was 261 ± 6 g (49 ± 1 % of the total Gd) during the sampling campaign. Local residents and inpatients should fully release Gd in the city, but outpatients only partially. Overall, 37 ± 1 % of the total administered Gd was recovered in the wastewater, so the remaining 63 ± 1 % of administered Gd is expected to be dispensed outside of the sewer system. Our approach enables to better understand the dispersion of GBCAs originated Gd in an urban environment.


Asunto(s)
Medios de Contraste , Metales de Tierras Raras , Humanos , Gadolinio , Aguas Residuales , Imagen por Resonancia Magnética
3.
Water Res ; 135: 104-111, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29459116

RESUMEN

The use of gadolinium-based contrasting agents (GBCA) is increasing because of the intensive usage of these agents in magnetic resonance imaging (MRI). Waste-water treatment does not reduce anthropogenic Gd-concentration significantly. Anomalous Gd-concentration in surface waters have been reported worldwide. However, removal of GBCA-s by aquatic macrophytes has still hardly been investigated. Four aquatic plant species (Lemna gibba, Ceratophyllum demersum, Elodea nuttallii, E. canadensis) were investigated as potential biological filters for removal of commonly used but structurally different GBCA-s (Omniscan, Dotarem) from water. These plant species are known to accumulate heavy metals and are used for removing pollutants in constructed wetlands. The Gd uptake and release of the plants was examined under laboratory conditions. Concentration-dependent infiltration of Gd into the body of the macrophytes was measured, however significant bioaccumulation was not observed. The tissue concentration of Gd reached its maximum value between day one and four in L. gibba and C. demersum, respectively, and its volume was significantly higher in C. demersum than in L. gibba. In C. demersum, the open-chain ligand Omniscan causes two-times higher tissue Gd concentration than the macrocyclic ligand Dotarem. Gadolinium was released from Gd-treated duckweeds into the water as they were grown further in Gd-free nutrient solution. Tissue Gd concentration dropped by 50% in duckweed treated by Omniscan and by Dotarem within 1.9 and 2.9 days respectively. None of the macrophytes had a significant impact on the Gd concentration of water in low and medium concentration levels (1-256 µg L-1). Biofiltration of GBCA-s by common macrophytes could not be detected in our experiments. Therefore it seems that in constructed wetlands, aquatic plants are not able to reduce the concentration of GBCA-s in the water. Furthermore there is a low risk that these plants cause the accumulation of anthropogenic Gd in the food chain.


Asunto(s)
Araceae/metabolismo , Medios de Contraste/metabolismo , Gadolinio/metabolismo , Hydrocharitaceae/metabolismo , Contaminantes Químicos del Agua/metabolismo , Biodegradación Ambiental , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA