Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Theor Appl Genet ; 135(9): 3005-3023, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35864201

RESUMEN

KEY MESSAGE: Modeling of the distribution of allele frequency over year of variety release identifies major loci involved in historical breeding of winter wheat. Winter wheat is a major crop with a rich selection history in the modern era of crop breeding. Genetic gains across economically important traits like yield have been well characterized and are the major force driving its production. Winter wheat is also an excellent model for analyzing historical genetic selection. As a proof of concept, we analyze two major collections of winter wheat varieties that were bred in Western Europe from 1916 to 2010, namely the Triticeae Genome (TG) and WAGTAIL panels, which include 333 and 403 varieties, respectively. We develop and apply a selection mapping approach, Regression of Alleles on Years (RALLY), in these panels, as well as in simulated populations. RALLY maps loci under sustained historical selection by using a simple logistic model to regress allele counts on years of variety release. To control for drift-induced allele frequency change, we develop a hybrid approach of genomic control and delta control. Within the TG panel, we identify 22 significant RALLY quantitative selection loci (QSLs) and estimate the local heritabilities for 12 traits across these QSLs. By correlating predicted marker effects with RALLY regression estimates, we show that alleles whose frequencies have increased over time are heavily biased toward conferring positive yield effect, but negative effects in flowering time, lodging, plant height and grain protein content. Altogether, our results (1) demonstrate the use of RALLY to identify selected genomic regions while controlling for drift, and (2) reveal key patterns in the historical selection in winter wheat and guide its future breeding.


Asunto(s)
Proteínas de Granos , Triticum , Alelos , Fenotipo , Fitomejoramiento , Triticum/genética
2.
Genome Biol ; 22(1): 137, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33957956

RESUMEN

BACKGROUND: Selection has dramatically shaped genetic and phenotypic variation in bread wheat. We can assess the genomic basis of historical phenotypic changes, and the potential for future improvement, using experimental populations that attempt to undo selection through the randomizing effects of recombination. RESULTS: We bred the NIAB Diverse MAGIC multi-parent population comprising over 500 recombinant inbred lines, descended from sixteen historical UK bread wheat varieties released between 1935 and 2004. We sequence the founders' genes and promoters by capture, and the MAGIC population by low-coverage whole-genome sequencing. We impute 1.1 M high-quality SNPs that are over 99% concordant with array genotypes. Imputation accuracy only marginally improves when including the founders' genomes as a haplotype reference panel. Despite capturing 73% of global wheat genetic polymorphism, 83% of genes cluster into no more than three haplotypes. We phenotype 47 agronomic traits over 2 years and map 136 genome-wide significant associations, concentrated at 42 genetic loci with large and often pleiotropic effects. Around half of these overlap known quantitative trait loci. Most traits exhibit extensive polygenicity, as revealed by multi-locus shrinkage modelling. CONCLUSIONS: Our results are consistent with a gene pool of low haplotypic diversity, containing few novel loci of large effect. Most past, and projected future, phenotypic changes arising from existing variation involve fine-scale shuffling of a few haplotypes to recombine dozens of polygenic alleles of small effect. Moreover, extensive pleiotropy means selection on one trait will have unintended consequences, exemplified by the negative trade-off between yield and protein content, unless selection and recombination can break unfavorable trait-trait associations.


Asunto(s)
Variación Genética , Haplotipos/genética , Herencia Multifactorial/genética , Fitomejoramiento , Triticum/genética , Mapeo Cromosómico , Segregación Cromosómica/genética , Eliminación de Gen , Genoma de Planta , Estudio de Asociación del Genoma Completo , Fenotipo , Proteínas de Plantas/metabolismo , Sitios de Carácter Cuantitativo/genética , Carácter Cuantitativo Heredable
3.
Plant Biotechnol J ; 19(5): 910-925, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33220119

RESUMEN

Rice varieties whose quality is graded as excellent have a lower percent grain chalkiness (PGC) of two per cent and below with higher whole grain yields upon milling, leading to higher economic returns for farmers. We have conducted a genome-wide association study (GWAS) using a combined population panel of indica and japonica rice varieties, and identified a total of 746 single nucleotide polymorphisms (SNPs) that were strongly associated with the chalk phenotype, covered 78 Quantitative Trait Loci (QTL) regions. Among them, 21 were high-value QTLs, as they explained at least 10 % of the phenotypic variance for PGC. A combined epistasis and GWAS was applied to dissect the genetics of the complex chalkiness trait, and its regulatory cascades were validated using gene regulatory networks. Promising novel epistatic interactions were found between the loci of chromosomes 6 (PGC6.1) and 7 (PGC7.8) that contributed to lower PGC. Based on haplotype mining only a few modern rice varieties confounded with a lower chalkiness, and they possess several PGC QTLs. The importance of PGC6.1 was validated through multi-parent advanced generation intercrosses and several low-chalk lines possessing superior haplotypes were identified. The results of this investigation have deciphered the underlying genetic networks that can reduce PGC to 2%, and will thus support future breeding programs to improve the grain quality of elite genetic material with high-yielding potentials.


Asunto(s)
Oryza , Carbonato de Calcio , Grano Comestible/genética , Epistasis Genética , Estudio de Asociación del Genoma Completo , Oryza/genética , Fenotipo , Fitomejoramiento
4.
Heredity (Edinb) ; 125(6): 396-416, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32616877

RESUMEN

Crop populations derived from experimental crosses enable the genetic dissection of complex traits and support modern plant breeding. Among these, multi-parent populations now play a central role. By mixing and recombining the genomes of multiple founders, multi-parent populations combine many commonly sought beneficial properties of genetic mapping populations. For example, they have high power and resolution for mapping quantitative trait loci, high genetic diversity and minimal population structure. Many multi-parent populations have been constructed in crop species, and their inbred germplasm and associated phenotypic and genotypic data serve as enduring resources. Their utility has grown from being a tool for mapping quantitative trait loci to a means of providing germplasm for breeding programmes. Genomics approaches, including de novo genome assemblies and gene annotations for the population founders, have allowed the imputation of rich sequence information into the descendent population, expanding the breadth of research and breeding applications of multi-parent populations. Here, we report recent successes from crop multi-parent populations in crops. We also propose an ideal genotypic, phenotypic and germplasm 'package' that multi-parent populations should feature to optimise their use as powerful community resources for crop research, development and breeding.


Asunto(s)
Productos Agrícolas , Genómica , Fitomejoramiento , Mapeo Cromosómico , Productos Agrícolas/genética , Genoma de Planta , Sitios de Carácter Cuantitativo
5.
Front Plant Sci ; 10: 1278, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31781130

RESUMEN

In this study, we anchored genotyping-by-sequencing data to the International Wheat Genome Sequencing Consortium Reference Sequence v1.0 assembly to generate over 40,000 high quality single nucleotide polymorphism markers on a panel of 376 elite European winter wheat varieties released between 1946 and 2007. We compared association mapping and genomic prediction accuracy for a range of productivity traits with previous results based on lower density dominant DArT markers. The results demonstrate that the availability of RefSeq v1.0 supports higher precision trait mapping and provides the density of markers required to obtain accurate predictions of traits controlled by multiple small effect loci, including grain yield.

6.
Appl Transl Genom ; 11: 9-17, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28018845

RESUMEN

Most agriculturally significant crop traits are quantitatively inherited which limits the ease and efficiency of trait dissection. Multi-parent populations overcome the limitations of traditional trait mapping and offer new potential to accurately define the genetic basis of complex crop traits. The increasing popularity and use of nested association mapping (NAM) and multi-parent advanced generation intercross (MAGIC) populations raises questions about the optimal design and allocation of resources in their creation. In this paper we review strategies for the creation of multi-parent populations and describe two complementary in silico studies addressing the design and construction of NAM and MAGIC populations. The first simulates the selection of diverse founder parents and the second the influence of multi-parent crossing schemes (and number of founders) on haplotype creation and diversity. We present and apply two open software resources to simulate alternate strategies for the development of multi-parent populations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...