Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 838(Pt 1): 156014, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35584751

RESUMEN

Despite water being critical for human survival, its uneven distribution, and exposure to countless sources of pollution make water shortages increasingly urgent. Membrane technology offers an efficient solution for alleviating the water shortage impact. The selectivity and permeability of membranes can be improved by incorporating additives of different nature and size scales. However, with the vast debate about the environmental and economic feasibility of the common nanoscale materials in water treatment applications, we can infer that there is a long way before the first industrial nanocomposite membrane is commercialized. This stumbling block has motivated the scientific community to search for alternative modification routes and/or materials with sustainable features. Herein, we present a pragmatic review merging the concept of sustainability, nanotechnology, and membrane technology through the application of natural additives (e.g., Clays, Arabic Gum, zeolite, lignin, Aquaporin), recycled additives (e.g., Biochar, fly ash), and recycled waste (e.g., Polyethylene Terephthalate, recycled polystyrene) for polymeric membrane synthesis and modification. Imparted features on polymeric membranes, induced by the presence of sustainable natural and waste-based materials, are scrutinized. In addition, the strategies harnessed to eliminate the hurdles associated with the application of these nano and micro size additives for composite membranes modification are elaborated. The expanding research efforts devoted recently to membrane sustainability and the prospects for these materials are discussed. The findings of the investigations reported in this work indicate that the application of natural and waste-based additives for composite membrane fabrication/modification is a nascent research area that deserves the attention of both research and industry.


Asunto(s)
Reciclaje , Zeolitas , Ceniza del Carbón , Contaminación Ambiental , Tereftalatos Polietilenos
2.
J Sep Sci ; 44(17): 3319-3323, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34212502

RESUMEN

Solvent-induced enantioselectivity reversal is a rarely reported phenomenon in porous homochiral materials. Similar behavior has been studied in chiral high performance liquid chromatography, where minor modifications to the mobile phase can induce elution order reversal of two enantiomers on a chiral stationary phase column. We report the first instance of solvent-induced enantioselectivity reversal in a homochiral metal organic framework. Further, we highlight the complex enantioselectivity behavior of homochiral metal organic frameworks toward racemic mixtures in the presence of solvents through racemate-solvent enantioselectivity and loading experiments as well as enantiopure-solvent loading experiments. We hypothesize that this interesting selectivity reversal behavior is likely to be observed in other competitive adsorption, nonchiral selective processes involving a solvent.

3.
Chemosphere ; 282: 130817, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34091294

RESUMEN

Ion exchange membranes (IEMs) are undergoing prosperous development in recent years. More than 30,000 papers which are indexed by Science Citation Index Expanded (SCIE) have been published on IEMs during the past twenty years (2001-2020). Especially, more than 3000 papers are published in the year of 2020, revealing researchers' great interest in this area. This paper firstly reviews the different types (e.g., cation exchange membrane, anion exchange membrane, proton exchange membrane, bipolar membrane) and electrochemical properties (e.g., permselectivity, electrical resistance/ionic conductivity) of IEMs and the corresponding working principles, followed by membrane synthesis methods, including the common solution casting method. Especially, as a promising future direction, green synthesis is critically discussed. IEMs are extensively applied in various applications, which can be generalized into two big categories, where the water-based category mainly includes electrodialysis, diffusion dialysis and membrane capacitive deionization, while the energy-based category mainly includes reverse electrodialysis, fuel cells, redox flow battery and electrolysis for hydrogen production. These applications are comprehensively discussed in this paper. This review may open new possibilities for the future development of IEMs.


Asunto(s)
Membranas Artificiales , Diálisis Renal , Cationes , Intercambio Iónico , Agua
4.
Chemosphere ; 262: 128072, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33182132

RESUMEN

A new synthesis method was developed to prepare an aluminum-based metal organic framework (MIL-96) with a larger particle size and different crystal habits. A low cost and water-soluble polymer, hydrolyzed polyacrylamide (HPAM), was added in varying quantities into the synthesis reaction to achieve >200% particle size enlargement with controlled crystal morphology. The modified adsorbent, MIL-96-RHPAM2, was systematically characterized by SEM, XRD, FTIR, BET and TGA-MS. Using activated carbon (AC) as a reference adsorbent, the effectiveness of MIL-96-RHPAM2 for perfluorooctanoic acid (PFOA) removal from water was examined. The study confirms stable morphology of hydrated MIL-96-RHPAM2 particles as well as a superior PFOA adsorption capacity (340 mg/g) despite its lower surface area, relative to standard MIL-96. MIL-96-RHPAM2 suffers from slow adsorption kinetics as the modification significantly blocks pore access. The strong adsorption of PFOA by MIL-96-RHPAM2 was associated with the formation of electrostatic bonds between the anionic carboxylate of PFOA and the amine functionality present in the HPAM backbone. Thus, the strongly held PFOA molecules in the pores of MIL-96-RHPAM2 were not easily desorbed even after eluted with a high ionic strength solvent (500 mM NaCl). Nevertheless, this simple HPAM addition strategy can still chart promising pathways to impart judicious control over adsorbent particle size and crystal shapes while the introduction of amine functionality onto the surface chemistry is simultaneously useful for enhanced PFOA removal from contaminated aqueous systems.


Asunto(s)
Aluminio , Caprilatos , Fluorocarburos , Estructuras Metalorgánicas , Contaminantes Químicos del Agua , Purificación del Agua , Resinas Acrílicas/química , Adsorción , Aluminio/química , Caprilatos/análisis , Carbón Orgánico/química , Fluorocarburos/análisis , Estructuras Metalorgánicas/química , Tamaño de la Partícula , Solubilidad , Propiedades de Superficie , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
5.
Chem Commun (Camb) ; 55(51): 7319-7322, 2019 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-31165814

RESUMEN

Waste PLA can be upcycled to metal organic frameworks of potential high value in a one-pot synthesis scheme, where PLA depolymerisation occurs in situ. Three homochiral lactate based frameworks were successfully synthesised and characterised from PLA as a feed source, including ZnBLD. The chiral separation ability of ZnBLD was maintained.

6.
Chemistry ; 25(36): 8489-8493, 2019 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-31056779

RESUMEN

A chiral, octahedral M12 L12 cage, which is charge neutral and contains an internal void of about 2000 Å3 , is reported. The cage was synthesised as an enantiopure complex by virtue of amino-acid-based dicarboxylate ligands, which assemble around copper paddlewheels at the vertices of the octahedron. The cage persists in solution with retention of the fluorescence properties of the parent acid. The solid-state structure contains large pores both within and between the cages, and displays permanent porosity for the sorption of gases with retention of crystallinity. Initial tests show some enantioselectivity of the cage towards guests in solution.

7.
ACS Appl Mater Interfaces ; 10(40): 34291-34301, 2018 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-30203961

RESUMEN

A new generation-2 light-responsive metal-organic framework (MOF) has been successfully synthesized using Zn as the metal source and both 2-phenyldiazenyl terephthalic acid and 1,4-diazabicyclo[2.2.2]octane (DABCO) as the ligands. It was found that Zn-azo-dabco MOF (Azo-DMOF-1) exhibited a photoresponsive CO2 adsorption both in static and dynamic condition because of the presence of azobenzene functionalities from the ligand. Further application of this MOF was evaluated by incorporating it as a filler in a mixed matrix membrane for CO2/N2 gas separation. Matrimid and polymer of intrinsic microporosity-1 (PIM-1) were used as the polymer matrix. It was found that Azo-DMOF-1 could enhance both the CO2 permeability and selectivity of the pristine polymer. In particular, the Azo-DMOF-1-PIM-1 composite membranes have shown a promising performance that surpassed the 2008 Robeson Upper Bound.

8.
Sci Rep ; 8(1): 2944, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29440732

RESUMEN

The performance of two generation-3 light-responsive metal-organic framework (MOF), namely JUC-62 and PCN-250, was investigated in a mixed matrix membrane (MMM) form. Both of them were incorporated inside the matrimid as the polymer matrix. Using our custom-designed membrane testing cell, it was observed that the MMMs showed up to 9% difference in CO2 permeability between its pristine and UV-irradiated condition. This shows that the light-responsive ability of the light-responsive MOFs could still be maintained. Thus, this finding is applicable in designing a smart material. Apart from that, the MMMs also has the potential to be applied for post-combustion carbon capture. At loadings up to 15 wt%, both CO2 permeability and CO2/N2 ideal selectivity could be significantly improved and surpassed the value exhibited by most of the MOF-matrimid MMM. Lastly the long term performance of the MMM was also evaluated and it was observed that both MMM could maintain their performance up to 1 month with only a slight decrease in CO2 permeability observed for 10 wt% PCN-250-matrimid. This study then opens up the possibility to fabricate a novel anti-aging multifunctional membrane material that is applicable as a smart material and also in post combustion carbon capture applications.

9.
RSC Adv ; 8(42): 24036-24048, 2018 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35540300

RESUMEN

A comprehensive scientometric approach was adopted to study the research on ion exchange membranes. The statistical analysis was conducted based on 21 123 publications which were related to the topic of ion exchange membranes. Specifically, from 2001 to 2016, over 18 000 articles were published on ion exchange membranes, indicating researchers' great interest in this topic. Especially, compared to 2001, the number of articles published in 2016 increased approximately six-fold. This trend continued in 2017 since over 2000 articles were published in the year of 2017. Also, these articles were spread across over 1000 different journals, near 100 countries/regions and over 5000 research institutes, revealing the importance of ion exchange membrane as well as the broad research interest in this field. Besides, the properties and applications of ion exchange membranes were also discussed statistically. Furthermore, keywords analysis indicated that fuel cell and proton exchange membrane had the highest cooccurrence frequency. Finally, research areas analysis revealed that ion exchange membranes had a close relation with chemistry, energy and materials.

10.
J Am Chem Soc ; 139(50): 18322-18327, 2017 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-29179533

RESUMEN

Efficient chiral separation remains a very challenging task due to the identical physical and chemical properties of the enantiomers of a molecule. Enantiomers only behave differently from each other in the presence of other chiral species. Homochiral metal-organic frameworks (MOFs) have received much attention for their promising enantioseparation properties. However, there are still challenges to overcome in this field such as high enantiomeric separation. Structural defects play an important role in the properties of MOFs and can significantly change the pore architecture. In this work, we introduced missing linker defects into a homochiral metal-organic framework [Zn2(bdc)(l-lac)(dmf)] (ZnBLD; bdc = 1,4-benzenedicarboxylic acid, l-lac = l-lactic acid, dmf = N,N'-dimethylformamide) and observed an increase in enantiomeric excess for 1-phenylethanol of 35% with the defective frameworks. We adjusted the concentration of monocarboxylic acid ligand l-lactic acid by varying the ratio of Zn2+ to ligand from 0.5 to 0.85 mmol. Additionally, a defective framework was synthesized with propanoic acid as modulator. In order to elucidate the correlation between defects and enantiomeric excess, five characterization techniques (FTIR, TGA, 1H NMR, ICP, and PXRD) were employed. Full width at half-maximum analysis (fwhm) was performed on the powder X-ray diffraction traces and showed that the higher concentration of monocarboxylic acid MOFs were isostructural but suffered from increased fwhm values.

11.
ACS Appl Mater Interfaces ; 9(44): 38612-38620, 2017 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-29028302

RESUMEN

Semihomogeneous cation exchange membranes with superior ion exchange capacity (IEC) were synthesized via a novel polymerization and sulfonation approach in porous polypropylene support. The IEC of membranes could reach up to 3 mmol/g because of high mass ratio of functional polymer to membrane support. Especially, theoretical IEC threshold value agreed well with experimental threshold value, indicating that IEC could be specifically designed without carrying out extensive experiments. Also, sulfonate groups were distributed both on membrane surface and across the membranes, which corresponded well with high IEC of the synthesized membranes. In addition, the semifinished membrane showed hydrophobic property because of the formation of polystyrene. In contrast, the final membranes demonstrated super hydrophilic property, indicating the adequate sulfonation of polystyrene. Furthermore, when sulfonation reaction time increased, the conductivity of membranes also showed a tendency to increase, revealing the positive relationship between conductivity and IEC. Finally, the final membranes showed sufficient thermal stability for electrodialysis applications such as water desalination.

12.
Sci Rep ; 7(1): 13355, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-29042605

RESUMEN

In this paper, we demonstrate the highly efficient photo-switching ability of a Cu-azobenzene tetracarboxylate MOF (JUC-62) for low-energy CO2 capture. Under UV light irradiation, both at 273 and 298 K, JUC-62 showed 51% and 34% lower CO2 uptake, respectively, than when UV light was off. Its dynamic CO2 uptake also matched well with its static condition. Storing it at ambient condition was also found not to destroy its framework structure and its dynamic photoswitching property could still be maintained.

13.
Sci Total Environ ; 595: 567-583, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28399496

RESUMEN

Reverse osmosis (RO) membrane technology is one of the most important technologies for water treatment. However, membrane fouling is an inevitable issue. Membrane fouling leads to higher operating pressure, flux decline, frequent chemical cleaning and shorter membrane life. This paper reviews membrane fouling types and fouling control strategies, with a focus on the latest developments. The fundamentals of fouling are discussed in detail, including biofouling, organic fouling, inorganic scaling and colloidal fouling. Furthermore, fouling mitigation technologies are also discussed comprehensively. Pretreatment is widely used in practice to reduce the burden for the following RO operation while real time monitoring of RO has the advantage and potential of providing support for effective and efficient cleaning. Surface modification could slow down membrane fouling by changing surface properties such as surface smoothness and hydrophilicity, while novel membrane materials and synthesis processes build a promising future for the next generation of RO membranes with big advancements in fouling resistance. Especially in this review paper, statistical analysis is conducted where appropriate to reveal the research interests in RO fouling and control.

14.
Sci Rep ; 5: 7823, 2015 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-25592747

RESUMEN

Gas separation membranes are one of the lowest energy technologies available for the separation of carbon dioxide from flue gas. Key to handling the immense scale of this separation is maximised membrane permeability at sufficient selectivity for CO2 over N2. For the first time it is revealed that metals can be post-synthetically exchanged in MOFs to drastically enhance gas transport performance in membranes. Ti-exchanged UiO-66 MOFs have been found to triple the gas permeability without a loss in selectivity due to several effects that include increased affinity for CO2 and stronger interactions between the polymer matrix and the Ti-MOFs. As a result, it is also shown that MOFs optimized in previous works for batch-wise adsorption applications can be applied to membranes, which have lower demands on material quantities. These membranes exhibit exceptional CO2 permeability enhancement of as much as 153% when compared to the non-exchanged UiO-66 mixed-matrix controls, which places them well above the Robeson upper bound at just a 5 wt.% loading. The fact that maximum permeability enhancement occurs at such low loadings, significantly less than the optimum for other MMMs, is a major advantage in large-scale application due to the more attainable quantities of MOF needed.

15.
Chem Commun (Camb) ; 50(66): 9365-8, 2014 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-25005683

RESUMEN

The inherent property of palladium to form hydride is effectively exploited for the removal of adsorbed stabilizer and capping agents. Formation of hydride on exposure of Pd nanoparticles to sodium-borohydride weakens the metal's interaction with the adsorbed-impurities and thus enables their easy removal without compromising the shape, size and dispersion.

17.
Membranes (Basel) ; 3(3): 182-95, 2013 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-24956945

RESUMEN

A low cost cation exchange membrane to be used in a specific bioelectrochemical system has been developed using poly(ether ether ketone) (PEEK). This material is presented as an alternative to current commercial ion exchange membranes that have been primarily designed for fuel cell applications. To increase the hydrophilicity and ion transport of the PEEK material, charged groups are introduced through sulfonation. The effect of sulfonation and casting conditions on membrane performance has been systematically determined by producing a series of membranes synthesized over an array of reaction and casting conditions. Optimal reaction and casting conditions for producing SPEEK ion exchange membranes with appropriate performance characteristics have been established by this uniquely systematic experimental series. Membrane materials were characterized by ion exchange capacity, water uptake, swelling, potential difference and NMR analysis. Testing this extensive membranes series established that the most appropriate sulfonation conditions were 60 °C for 6 h. For mechanical stability and ease of handling, SPEEK membranes cast from solvent casting concentrations of 15%-25% with a resulting thickness of 30-50 µm were also found to be most suitable from the series of tested casting conditions. Drying conditions did not have any apparent impact on the measured parameters in this study. The conductivity of SPEEK membranes was found to be in the range of 10-3 S cm-1, which is suitable for use as a low cost membrane in the intended bioelectrochemical systems.

18.
Chem Commun (Camb) ; 48(60): 7483-5, 2012 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-22728689

RESUMEN

For the first time a top-down process was used to control the spatial location of Metal-Organic Frameworks on a surface. Deep X-ray lithography was utilised to micropattern a Zeolitic Imidazolate Framework layer on a sol-gel surface, with exposure hardening the sol-gel by inducing crosslinking while leaving the frameworks intact.

19.
J Colloid Interface Sci ; 363(2): 431-9, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21872877

RESUMEN

A new type of nanocomposite ion-exchange membranes containing sulfonated polyethersulfone (sPES) polymer matrix and sulfonated surface-functionalized mesoporous silica (SS) inorganic fillers was prepared. Various characterizations revealed that the addition of inorganic fillers with different shapes had a significant influence on the membrane structure. The mesoporous inorganic fillers not only created extra pore and water channels, assisting the ionic migration and improving conductivity of the composites, but also provided additional fixed charge groups upon surface modification. This allows the Donnan exclusion to work effectively and thus improve the selectivity of membranes. It was proved that the incorporation of appropriate amount of SS additive could significantly improve the conductivity (up to 20 folds) and permselectivity (about 14%) of the sPES membranes. The performance of these newly developed membranes in desalination by electrodialysis was comparable with that of a commercial membrane (FKE).


Asunto(s)
Membranas Artificiales , Nanocompuestos/química , Dióxido de Silicio/química , Intercambio Iónico , Estructura Molecular , Tamaño de la Partícula , Polímeros/química , Porosidad , Sulfonas/química , Propiedades de Superficie
20.
Materials (Basel) ; 4(5): 845-856, 2011 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-28879954

RESUMEN

In this work we investigate the potential of a polyethylene glycol-polypropylene glycol-polyethylene glycol, tri-block copolymer as a template for a hybrid carbon/silica membrane for use in the non-osmotic desalination of seawater. Silica samples were loaded with varying amounts of tri-block copolymer and calcined in a vacuum to carbonize the template and trap it within the silica matrix. The resultant xerogels were analyzed with FTIR, Thermogravimetric analysis (TGA) and N2 sorption techniques, wherein it was determined that template loadings of 10 and 20% produced silica networks with enhanced pore volumes and appropriately sized pores for desalination. Membranes were created via two different routes and tested with feed concentrations of 3, 10 and 35 ppk of NaCl at room temperature employing a transmembrane pressure drop of 85% (in most cases >95%) and fluxes higher than 1.6 kg m-2 h-1. Furthermore, the carbonized templated membranes displayed equal or improved performance compared to similarly prepared non-templated silica membranes, with the best results of a flux of 3.7 kg m-2 h-1 with 98.5% salt rejection capacity, exceeding previous literature reports. In addition, the templated silica membranes exhibited superior hydrostability demonstrating their potential for long-term operation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA