Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mar Pollut Bull ; 202: 116298, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38581733

RESUMEN

As plastic pollution continues to accumulate at the seafloor, concerns around benthic ecosystem functionality heightens. This research demonstrates the systematic effects of polyester microfibers on seafloor organic matter consumption rates, an important benthic ecosystem function connected to multiple reactions and processes. We used a field-based assay to measure the loss of organic matter, both with and without polyester microfiber contamination. We identified sediment organic matter content, mud content, and mean grain size as the main drivers of organic matter consumption, however, polyester microfiber contamination decoupled ecosystem relationships and altered observed organic matter cycling dynamics. Organic matter consumption rates varied across horizontal and vertical spaces, highlighting that consumption and associated plastic effects are dependent on environmental heterogeneity at both small (within sites) and larger (between sites) scales. Our results emphasize the important role habitat heterogeneity plays in seafloor organic matter consumption and the associated effects of plastic pollution on ecosystem function.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Sedimentos Geológicos , Plásticos , Poliésteres , Contaminantes Químicos del Agua , Sedimentos Geológicos/química , Poliésteres/análisis , Contaminantes Químicos del Agua/análisis , Plásticos/análisis
2.
Sci Total Environ ; 858(Pt 3): 160114, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36370782

RESUMEN

Emerging research shows that microplastic pollution could be impacting seafloor ecosystem function, but this has been primarily demonstrated without environmental and ecological context. This causes uncertainty in the real-world effects of microplastic pollution and leaves out essential information guiding policy and mitigation. In this study, we take a well-supported sampling design and statistical approach commonly employed in benthic ecology to evaluate real-world effects of microplastic pollution on coastal, benthic ecosystem function. We utilised environmental gradients in the Waitemata Harbour of Auckland, New Zealand to evaluate the importance of commonly assessed biological, chemical, and geological sediment variables and the characteristics of microplastic contaminants in driving essential ecosystem functions. Our results showed that models including microplastic terms were more accurate and explained more variability than those without microplastic terms, highlighting that microplastics impact real-world seafloor ecosystem function. Specifically, microplastic fibers significantly influenced oxygen flux (p < 0.03) and the diverse forms of microplastics (i.e., richness) significantly influenced ammonium flux (p < 0.02). Additionally, interactions between microplastic fiber concentrations and mollusc abundances significantly contributed to oxygen flux (p < 0.02). These results provide the first evaluation of in situ relationships between microplastics and ecosystem function. Even more importantly, this study suggests the value of environmental and ecological context for addressing microplastic impacts on benthic ecosystems and argues for further field examination.


Asunto(s)
Conducción de Automóvil , Microplásticos , Microplásticos/toxicidad , Ecosistema , Plásticos , Oxígeno
3.
Environ Pollut ; 288: 117731, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34273763

RESUMEN

Coastal sediments, where microplastics (MPs) accumulate, support benthic microalgae (BMA) that contribute to ecosystem functions such as primary production, nutrient recycling and sediment biostabilization. The potential interactions between MPs, BMA and associated properties and functions remain poorly understood. To examine these interactions, a survey of 22 intertidal sites was conducted. MP abundance, size and a suite of MP diversity indices (based on color and shape) were determined from surface sediments alongside biochemical and physical properties. MPs were detected at all sites and dominated by polypropylene (34%), polyester (18%) and polyethylene (11%). Fragment and fiber dominance (16-92% and 6-81% respectively) and color-shape category diversity varied significantly by site. Distance-based linear models demonstrated that estuary-wide, mean grain size and mud were the best predictors of MP abundance-diversity matrices, but variance explained was low (9%). Relationships were improved when the data was split into sandy and muddy habitats. In sandy habitats (<8% mud), physical properties of the bed (mean grain size, mud content and distance from the estuary mouth) were still selected as predictors of MP abundance-diversity (14% variance explained); but a number of bivariate relationships were detected with biochemical properties such as BMA associated pigments and organic matter. In muddy habitats (>8% mud), porewater ammonium was lower when fiber abundance and overall MP diversity were higher. The inclusion of porewater ammonium, organic matter content and pheophytins alongside physical properties explained a greater percentage of the variance in MP abundance-diversity for muddy habitats (21%). The results highlight the importance of examining plastic shapes and MP categories in addition to abundance and emphasize that functionally different habitats should be examined separately to increase our understanding of MP-biota-function relationships.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Ecosistema , Monitoreo del Ambiente , Sedimentos Geológicos , Plásticos , Contaminantes Químicos del Agua/análisis
4.
Environ Pollut ; 273: 116423, 2021 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-33477066

RESUMEN

Plastic pollution continues to seep into natural and pristine habitats. Emerging laboratory-based research has evoked concern regarding plastic's impact on ecosystem structure and function, the essence of the ecosystem services that supports our life, wellbeing, and economy. These impacts have yet to be observed in nature where complex ecosystem interaction networks are enveloped in environmental physical and chemical dynamics. Specifically, there is concern that environmental impacts of plastics reach beyond toxicity and into ecosystem processes such as primary production, respiration, carbon and nutrient cycling, filtration, bioturbation, and bioirrigation. Plastics are popularly regarded as recalcitrant carbon molecules, although they have not been fully assessed as such. We hypothesize that plastics can take on similar roles as natural recalcitrant carbon (i.e., lignin and humic substances) in carbon cycling and associated biogeochemistry. In this paper, we review the current knowledge of the impacts of plastic pollution on marine, benthic ecosystem function. We argue for research advancement through (1) employing field experiments, (2) evaluating ecological network disturbances by plastic, and (3) assessing the role of plastics (i.e., a carbon-based molecule) in carbon cycling at local and global scales.

5.
Sci Total Environ ; 613-614: 298-305, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28917168

RESUMEN

To investigate the occurrence and distribution of microplastics in the southeastern coastal region of the United States, we quantified the amount of microplastics in sand samples from multiple coastal sites and developed a predictive model to understand the drift of plastics via ocean currents. Sand samples from eighteen National Park Service (NPS) beaches in the Southeastern Region were collected and microplastics were isolated from each sample. Microplastic counts were compared among sites and local geography was used to make inferences about sources and modes of distribution. Samples were analyzed to identify the composition of particles using Fourier transform infrared spectroscopy (FTIR). To predict the spatiotemporal distribution and movements of particles via coastal currents, a Regional Ocean Modeling System (ROMS) was applied. Microplastics were detected in each of the sampled sites although abundance among sites was highly variable. Approximately half of the samples were dominated by thread-like and fibrous materials as opposed to beads and particles. Results of FTIR suggested that 24% consisted of polyethylene terephthalate (PET), while about 68% of the fibers tested were composed of man-made cellulosic materials such as rayon. Based on published studies examining sources of microplastics, the shape of the particles found here (mostly fibers) and the presence of PET, we infer the source of microplastics in coastal areas is mainly from urban areas, such as wastewater discharge, rather than breakdown of larger marine debris drifting in the ocean. Local geographic features, e.g., the nearness of sites to large rivers and urbanized areas, explain variance in amount of microplastics among sites. Additionally, the distribution of simulated particles is explained by ocean current patterns; computer simulations were correlated with field observations, reinforcing the idea that ocean currents can be a good predictor of the fate and distribution of microplastics at the sites sampled here.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...