Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Exp Gerontol ; 184: 112337, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38006949

RESUMEN

Aging is associated with detrimental bone loss leading to fragility fractures in both men and women. Notably, a majority of bone loss with aging is cortical, as well as a large number of fractures are non-vertebral and at the non-hip sites. Nacre is a product of mollusks composed of calcium carbonate embedded in organic components. As our previous study demonstrated the protective effect of nacre supplementation on trabecular bone loss in ovariectomized rats, we sought to evaluate the effect of dietary nacre on bone loss related to aging in female mice which do not suffer true menopause as observed in women. The current study compared the effect of a 90-day long nacre-supplemented diet to that of Standard or CaCO3 diets on both bone mass and strength in 16-month-old C57BL/6 female mice. Multiple approaches were performed to assess the microarchitecture and mechanical properties of long bones, analyze trabecular histomorphometry, and measure bone cell-related gene expressions, and bone turnover markers. In the cortex, dietary nacre improved cortical bone strength in line with lower expression levels of genes reflecting osteoclasts activity compared to Standard or CaCO3 diets (p < 0.05). In the trabeculae, nacre-fed mice were characterized by a bone remodeling process more active than the other groups as shown by greater histomorphometric parameters and osteoblast-related gene expressions (p < 0.05). But these differences were not exhibited at the level of the trabecular microarchitecture at this age. Collectively, these data suggest that dietary nacre should be a potential candidate for reducing aging-associated cortical bone loss in the elderly.


Asunto(s)
Enfermedades Óseas Metabólicas , Nácar , Humanos , Masculino , Anciano , Femenino , Ratones , Ratas , Animales , Ratones Endogámicos C57BL , Huesos , Densidad Ósea , Hueso Cortical , Suplementos Dietéticos
2.
Semin Musculoskelet Radiol ; 27(4): 463-470, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37748470

RESUMEN

Chronic kidney disease (CKD) induces mineral and bone disorders (CKD-MBD) that affect calcium and phosphate metabolism. This review links pathophysiology, histologic aspects, and radiologic signs. CKD leads to bone lesions, namely renal osteodystrophy, which may combine low or high bone remodeling, impaired mineralization, and bone loss. CKD-MBD also comprises vascular calcifications, which, together with bone disease, lead to a high risk of cardiovascular events and osteoporotic fractures that increase both morbidity and mortality. Osteoporosis assessment is based on screening for classic risk factors and CKD-related factors (disease duration/severity, transplantation history, dialysis vintage). Treatment of mineral disorders may combine serum phosphate lowering drugs, natural vitamin D or its 1-α derivatives, or calcium-sensing receptor agonists. Treatment of osteoporosis is conventional in mild to moderate stages but more complex in severe CKD because evidence about the efficacy and safety of anti-osteoporosis drugs is scant.


Asunto(s)
Enfermedades Óseas Metabólicas , Trastorno Mineral y Óseo Asociado a la Enfermedad Renal Crónica , Fracturas Óseas , Osteoporosis , Humanos , Trastorno Mineral y Óseo Asociado a la Enfermedad Renal Crónica/diagnóstico por imagen , Osteoporosis/diagnóstico por imagen , Osteoporosis/tratamiento farmacológico , Fosfatos
3.
Clin Kidney J ; 16(3): 456-472, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36865010

RESUMEN

The coexistence of osteoporosis and chronic kidney disease (CKD) is an evolving healthcare challenge in the face of increasingly aging populations. Globally, accelerating fracture incidence causes disability, impaired quality of life and increased mortality. Consequently, several novel diagnostic and therapeutic tools have been introduced for treatment and prevention of fragility fractures. Despite an especially high fracture risk in CKD, these patients are commonly excluded from interventional trials and clinical guidelines. While management of fracture risk in CKD has been discussed in recent opinion-based reviews and consensus papers in the nephrology literature, many patients with CKD stages 3-5D and osteoporosis are still underdiagnosed and untreated. The current review addresses this potential treatment nihilism by discussing established and novel approaches to diagnosis and prevention of fracture risk in patients with CKD stages 3-5D. Skeletal disorders are common in CKD. A wide variety of underlying pathophysiological processes have been identified, including premature aging, chronic wasting, and disturbances in vitamin D and mineral metabolism, which may impact bone fragility beyond established osteoporosis. We discuss current and emerging concepts of CKD-mineral and bone disorders (CKD-MBD) and integrate management of osteoporosis in CKD with current recommendations for management of CKD-MBD. While many diagnostic and therapeutic approaches to osteoporosis can be applied to patients with CKD, some limitations and caveats need to be considered. Consequently, clinical trials are needed that specifically study fracture prevention strategies in patients with CKD stages 3-5D.

4.
Bone ; 169: 116640, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36526262

RESUMEN

Impaired mechanical stimuli during hindlimb unloading (HLU) are believed to exacerbate osteocyte paracrine regulation of osteoclasts. We hypothesized that bone loss and deterioration of the osteocyte lacuno-canalicular network are attenuated in HLU mice housed at thermoneutrality (28 °C) compared with those housed at ambient temperature (22 °C). Following acclimatization, 20-week-old male C57BL/6J mice were submitted to HLU or kept in pair-fed control cages (CONT), for 5 days (5d) or 14d, at 22 °C or 28 °C. In the femur distal metaphysis, thermoneutral CONT mice had higher bone volume (p = 0.0007, BV/TV, in vivo µCT, vs. 14dCONT22) whilst osteoclastic surfaces of CONT and HLU were greater at 22 °C (5dCONT22 + 53 %, 5dHLU22 + 50 %, 14dCONT22 + 186 %, 14dHLU22 + 104 %, vs matching 28 °C group). In the femur diaphysis and at both temperatures, 14dHLU exhibited thinner cortices distally or proximally compared to controls; the mid-diaphysis being thicker at 28 °C than at 22 °C in all groups. Expression of cortical genes for proteolytic enzyme (Mmp13), markers for osteoclastogenic differentiation (MCSF, RANKL), and activity (TRAP, Ctsk) were increased following 22 °C HLU, whereas only Ctsk expression was increased following 28 °C HLU. Expression of cortical genes for apoptosis, senescence, and autophagy were not elevated following HLU at any temperature. Osteocyte density at the posterior mid-diaphysis was similar between groups, as was the proportion of empty lacunae (<0.5 %). However, analysis of the lacuno-canalicular network (LCN, fluorescein staining) revealed unstained areas in the 14dHLU22 group only, suggesting disrupted LCN flow in this group alone. In conclusion, 28 °C housing influences the HLU bone response but does not prevent bone loss. Furthermore, our results do not show osteocyte senescence or death, and at thermoneutrality, HLU-induced bone resorption is not triggered by osteoclastic activators RANKL and MCSF.


Asunto(s)
Enfermedades Óseas Metabólicas , Resorción Ósea , Ratones , Masculino , Animales , Suspensión Trasera , Osteocitos/metabolismo , Ratones Endogámicos C57BL , Huesos/metabolismo , Resorción Ósea/metabolismo , Enfermedades Óseas Metabólicas/metabolismo
5.
JBMR Plus ; 6(9): e10655, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36111203

RESUMEN

Nacre has emerged as a beneficial natural product for bone cells and tissues, but its effect was only studied by gavage in the ovariectomized mouse model. We sought to assess the antiosteoporotic effect of nacre through a nutritional supplementation in the ovariectomized rat model. Sixteen-week-old female Wistar rats were either Sham-operated or bilateral ovariectomized (OVX) and then fed with standard diet (Sham and OVX groups) or standard diet supplemented with either 0.25% CaCO3 or nacre (OVX CaCO3 and OVX Nacre group, respectively) for 28 days (n = 10/group). The bone microarchitecture was assessed at appendicular and axial bones by micro-computed tomography (µCT). Histomorphometric analysis was performed to determine cellular and dynamic bone parameters. Bone metabolism was also evaluated by biochemical markers and gene expression levels. Nacre-based diet prevented the OVX-induced bone loss better than that of the CaCO3 supplement, given the significant changes in trabecular bone volume fraction (BV/TV) both at the femoral distal metaphysis (difference, 35%; p = 0.004) and at the second lumbar spine (difference, 11%; p = 0.01). Trabecular osteoclast surfaces (Oc.S/BS) were also 1.5-fold lower at the tibial proximal metaphysis in OVX Nacre group compared with OVX CaCO3 group (p = 0.02). By principal component analysis (PCA), OVX Nacre group formed a cluster away from OVX group and with a trend closest to Sham group. These data were consistent with biological measurements demonstrating a positive profile related to nacre supplementation, which blunted an increase in serum CTX level and enhanced serum P1NP secretion 14 days post-OVX compared with CaCO3 supplementation. Bmp2 mRNA expression in OVX Nacre group was +1.76-fold (p = 0.004) and +1.30-fold (p = 0.20) compared with OVX and OVX CaCO3 groups, respectively. We conclude that supplementation with nacre could effectively limit bone loss induced by estrogen deficiency just after OVX in rats by modulating the negative imbalance of bone turnover. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

6.
Front Physiol ; 13: 952140, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36160873

RESUMEN

Purpose: To evaluate whole-body vibration (WBV) osteogenic potential in physically inactive postmenopausal women using high-frequency and combined amplitude stimuli. Methods: Two-hundred fifty-five physically inactive postmenopausal women (55-75 years) with 10-year major osteoporotic fracture risk (3%-35%) participated in this 18-month study. For the first 12 months, the vibration group experienced progressive 20-min WBV sessions (up to 3 sessions/week) with rest periods (30-60 s) between exercises. Frequencies (30-50 Hz), with low (0.2-0.4 mm) and high (0.6-0.8 mm) amplitude stimuli were delivered via PowerPlate Pro5 platforms producing accelerations of (0.75-7.04 g). The last 6 months for the treatment group were a follow-up period similar to control. Serum bone remodelling markers [C-terminal crosslinked telopeptide of type-1 collagen (CTX), procollagen type-1 N-terminal propeptide (P1NP), bone alkaline phosphatase (BAP) and sclerostin] were measured at fasting. CTX and P1NP were determined by automated chemiluminescence immunoassay, bone alkaline phosphatase (BAP) by automated spectrophotometric immunoassay, and sclerostin by an enzyme-immunoassay. Bone mineral density (BMD) of the whole-body, proximal femur and lumbar vertebrae was measured by dual-energy X-ray absorptiometry (DXA). Bone microarchitecture of the distal non-dominant radius and tibia was measured by high-resolution peripheral quantitative computed tomography (HR-pQCT). Results: Femoral neck (p = 0.520) and spine BMD (p = 0.444) failed to improve after 12 months of WBV. Bone macro and microstructural parameters were not impacted by WBV, as well as estimated failure load at the distal radius (p = 0.354) and tibia (p = 0.813). As expected, most DXA and HR-pQCT parameters displayed age-related degradation in this postmenopausal population. BAP and CTX increased over time in both groups, with CTX more marginally elevated in the vibration group when comparing baseline changes to month-12 (480.80 pmol/L; p = 0.039) and month-18 (492.78 pmol/L; p = 0.075). However, no differences were found when comparing group concentrations only at month-12 (506.35 pmol/L; p = 0.415) and month-18 (518.33 pmol/L; p = 0.480), indicating differences below the threshold of clinical significance. Overall, HR-pQCT, DXA bone parameters and bone turnover markers remained unaffected. Conclusion: Combined amplitude and high-frequency training for one year had no ameliorating effect on DXA and HR-pQCT bone parameters in physically inactive postmenopausal women. Serum analysis did not display any significant improvement in formation and resorption markers and also failed to alter sclerostin concentrations between groups.

7.
Cancers (Basel) ; 14(14)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35884504

RESUMEN

Bone metastases are frequent complications of breast cancer, facilitating the development of anarchic vascularization and induce bone destruction. Therefore, anti-angiogenic drugs (AAD) have been tested as a therapeutic strategy for the treatment of breast cancer bone metastasis. However, the kinetics of skeletal vascularization in response to tumor invasion under AAD is still partially understood. Therefore, the aim of this study was to explore the effect of AAD on experimental bone metastasis by analyzing the three-dimensional (3D) bone vasculature during metastatic formation and progression. Seventy-three eight-week-old female mice were treated with AAD (bevacizumab, vatalanib, or a combination of both drugs) or the vehicle (placebo) one day after injection with breast cancer cells. Mice were sacrificed eight or 22 days after tumor cell inoculation (time points T1 and T2, respectively). Synchrotron radiation microcomputed tomography (SR-µCT) was used to image bone and blood vessels with a contrast agent. Hence, 3D-bone and vascular networks were simultaneously visualized and quantitatively analyzed. At T1, the trabecular bone volume fraction was significantly increased (p < 0.05) in the combined AAD-treatment group, compared to the placebo- and single AAD-treatment groups. At T2, only the bone vasculature was reduced in the combined AAD-treatment group (p < 0.05), as judged by measurement of the blood vessel thickness. Our data suggest that, at the early stage, combined AAD treatment dampens tumor-induced bone resorption with no detectable effects on bone vessel organization while, at a later stage, it affects the structure of bone microvascularization.

9.
Int J Mol Sci ; 23(4)2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35216203

RESUMEN

Osteoarthritis (OA) is a whole joint disease characterized by an important remodeling of the osteochondral junction. It includes cartilage mineralization due to chondrocyte hypertrophic differentiation and bone sclerosis. Here, we investigated whether gremlin-1 (Grem-1) and its BMP partners could be involved in the remodeling events of the osteochondral junction in OA. We found that Grem-1, BMP-2, and BMP-4 immunostaining was detected in chondrocytes from the deep layer of cartilage and in subchondral bone of knee OA patients, and was positively correlated with cartilage damage. ELISA assays showed that bone released more Grem-1 and BMP-4 than cartilage, which released more BMP-2. In vitro experiments evidenced that compression stimulated the expression and the release of Grem-1 and BMP-4 by osteoblasts. Grem-1 was also overexpressed during the prehypertrophic to hypertrophic differentiation of murine articular chondrocytes. Recombinant Grem-1 stimulated Mmp-3 and Mmp-13 expression in murine chondrocytes and osteoblasts, whereas recombinant BMP-4 stimulated the expression of genes associated with angiogenesis (Angptl4 and osteoclastogenesis (Rankl and Ccl2). In conclusion, Grem-1 and BMP-4, whose expression at the osteochondral junction increased with OA progression, may favor the pathological remodeling of the osteochondral junction by inducing a catabolic and tissue remodeling program in hypertrophic chondrocytes and osteoblasts.


Asunto(s)
Proteína Morfogenética Ósea 4/metabolismo , Condrocitos/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Osteoartritis de la Rodilla/metabolismo , Osteoblastos/metabolismo , Animales , Proteína Morfogenética Ósea 2/metabolismo , Cartílago Articular/metabolismo , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Condrogénesis/fisiología , Humanos , Metaloproteinasa 13 de la Matriz/metabolismo , Metaloproteinasa 3 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Osteogénesis/fisiología
10.
Ther Adv Rare Dis ; 3: 26330040221074702, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37180412

RESUMEN

X-linked hypophosphatemia (XLH) is a genetic disease mostly related to PHEX gene mutations which increases FGF23 serum levels, leading to hypophosphatemia and osteomalacia in adults, while affected children, in addition, develop rickets. Most of adults with XLH suffer from reduced quality of life and physical disability due to chronic bone and joint pain related to limb deformities, early osteoarthritis, delayed-healing of insufficiency fractures, and enthesopathies. Dental infections, muscle dysfunction, and deafness are also frequent. The current treatment consists of 2-5 times daily oral administration of phosphate combined to active vitamin D, often badly tolerated with immediate digestive side effects, responsible for poor compliance. In the long term, it may induce nephrocalcinosis and hyperparathyroidism. Burosumab, an anti-FGF23 blocking antibody, was approved for treating children with XLH in many countries. A randomized 24-week-long placebo-controlled trial, followed by an open-label period of equal duration was conducted in 134 XLH adults treated with 1 mg/kg burosumab/4 weeks. During burosumab treatment, 94% of the patients normalized serum phosphate values versus 7% in the placebo group. Fracture healing was increased 16.7 times compared with placebo-treated patients. All pain and disability tests improved significantly in a time-dependent manner. Burosumab for 48 weeks improved histological lesions of osteomalacia in a single-arm longitudinal study analyzing paired bone biopsies. Another single-arm, open-label study investigated the long-term safety and efficacy of burosumab in 20 adult patients followed for 3.2 years. Burosumab was beneficial on pain and disability scores and on bone remodeling markers. No major side effects especially no hyperphosphatemic episodes were reported. Overall, the benefit/risk ratio of burosumab is positive in adult patients with clinical and/or biological complications of XLH. Burosumab corrects hypophosphatemia, promotes fracture healing, and induces a modest but significant effect on XLH-induced subjective pain and disability symptoms. Plain language title and summary: Effects of conventional treatment and burosumab in adults with X-linked hypophosphatemia.X-linked hypophosphatemia (XLH) is a disease of genetic origin that affects mineralized tissues (skeleton and teeth) and impairs muscle function. It induces a decrease in blood phosphate levels. This leads to under mineralization of bones and insufficiency fractures that heal slowly, associated with poor dental health characterized by spontaneous dental abscesses. Adults with XLH suffer from chronic pain and limb deformities that alter their quality of life. They are currently treated with daily administration of vitamin D and several daily doses of phosphate. This treatment may induce parathyroid gland dysfunction and mineral deposits in the kidney. If not tightly monitored, these side effects may lead to tertiary hyperparathyroidism and the need for parathyroid gland surgery, or to nephrocalcinosis which may proceed to chronic kidney disease. Burosumab is an antibody that blocks the action of FGF23 the factor that circulates in excess in blood and is responsible for phosphate renal leak in XLH. Three studies demonstrated that burosumab, injected every 4 weeks, is efficient and safe for treating adults with XLH.

11.
Nutrients ; 13(8)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34444687

RESUMEN

The worldwide global increase in serum 25-hydroxyvitamin D (25(OH)D) measurements has led some countries to restrict reimbursement for certain clinical situations only. Another approach could consist in providing physicians with screening tools in order to better target blood test prescription. The objective of the SCOPYD study was to identify the best combination of predictors of serum VitD concentration among adults aged 18-70 years. Potential risk factors for VitD deficiency were collected using a comprehensive self-administered questionnaire. A multivariable linear regression was used to build a predictive model of serum 25(OH)D concentration. Among 2488 participants, 1080 (43.4%) had VitD deficiency (<50 nmol/L) and 195 (7.8%) had severe deficiency (<25 nmol/L). The final model included sunlight exposure in the preceding week and during the last holidays, month of blood sampling, age, sex, body mass index, skin phototype, employment, smoking, sport practice, latitude, and VitD supplementation in preceding year. The area under the curve was 0.82 (95% CI (0.78; 0.85)) for severe deficiency. The model predicted severe deficiency with a sensitivity of 77.9% (95% CI (69.1; 85.7)) and a specificity of 68.3% (95% CI (64.8; 71.9)). We identified a set of predictors of severe VitD deficiency that are easy to collect in routine that may help to better target patients for serum 25(OH)D concentration determination.


Asunto(s)
Deficiencia de Vitamina D/epidemiología , Vitamina D/análogos & derivados , Adolescente , Adulto , Anciano , Índice de Masa Corporal , Clima , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo , Estaciones del Año , Piel , Luz Solar , Vitamina D/sangre , Deficiencia de Vitamina D/sangre , Deficiencia de Vitamina D/diagnóstico
12.
Clin Kidney J ; 14(4): 1077-1087, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34094517

RESUMEN

Chronic kidney disease is defined as a decrease in renal function or evidence of kidney injury for >3 months. This represents an oversimplification that may confuse physicians. Thus kidney function is equated to glomerular filtration rate, which represents one of multiple kidney functions. Some potentially more important renal functions are lost earlier, such as the production for the anti-ageing factor Klotho. Overall, these changes modify the emergent properties of the body, altering the relationships between different organs and systems, in a manner that is difficult to predict the response to interventions based on normal physiology concepts, as there is a novel steady state of interorgan relations. In this regard we now discuss the impact of CKD on heart failure; osteomuscular and joint pain and bone fragility and fractures; and osteosarcopaenia as seen by a cardiologist, a rheumatologist and a geriatrician.

13.
Nephrol Dial Transplant ; 36(1): 42-59, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33098421

RESUMEN

Controlling the excessive fracture burden in patients with chronic kidney disease (CKD) Stages G4-G5D remains an impressive challenge. The reasons are 2-fold. First, the pathophysiology of bone fragility in patients with CKD G4-G5D is complex and multifaceted, comprising a mixture of age-related (primary male/postmenopausal), drug-induced and CKD-related bone abnormalities. Second, our current armamentarium of osteoporosis medications has not been developed for, or adequately studied in patients with CKD G4-G5D, partly related to difficulties in diagnosing osteoporosis in this specific setting and fear of complications. Doubts about the optimal diagnostic and therapeutic approach fuel inertia in daily clinical practice. The scope of the present consensus paper is to review and update the assessment and diagnosis of osteoporosis in patients with CKD G4-G5D and to discuss the therapeutic interventions available and the manner in which these can be used to develop management strategies for the prevention of fragility fracture. As such, it aims to stimulate a cohesive approach to the management of osteoporosis in patients with CKD G4-G5D to replace current variations in care and treatment nihilism.


Asunto(s)
Osteoporosis/diagnóstico , Osteoporosis/terapia , Guías de Práctica Clínica como Asunto/normas , Insuficiencia Renal Crónica/complicaciones , Consenso , Manejo de la Enfermedad , Humanos , Osteoporosis/etiología
14.
PLoS One ; 15(12): e0243098, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33296408

RESUMEN

Insights into the effects of osteoarthritis (OA) and physical interventions on the musculoskeletal system are limited. Our goal was to analyze musculoskeletal changes in OA mice and test the efficacy of 8-week exposure to hypergravity, as a replacement of physical activity. 16-week-old male (C57BL/6J) mice allocated to sham control and OA groups not centrifuged (Ctrl 1g and OA 1g, respectively) or centrifuged at 2g acceleration (Ctrl 2g and OA 2g). OA 1g displayed decreased trabecular bone in the proximal tibia metaphysis and increased osteoclastic activity and local TNFα gene expression, all entirely prevented by 2g gravitational therapy. However, while cortical bone of tibia midshaft was preserved in OA 1g (vs. ctrl), it is thinner in OA 2g (vs. OA 1g). In the hind limb, OA at 1g increased fibers with lipid droplets by 48% in the tibialis anterior, a fact fully prevented by 2g. In Ctrl, 2g increased soleus, tibialis anterior and gastrocnemius masses. In the soleus of both Ctrl and OA, 2g induced larger fibers and a switch from type-II to type-I fiber. Catabolic (myostatin and its receptor activin RIIb and visfatine) and anabolic (FNDC5) genes dramatically increased in Ctrl 2g and OA 2g (p<0.01 vs 1g). Nevertheless, the overexpression of FNDC5 (and follistatine) was smaller in OA 2g than in Ctrl 2g. Thus, hypergravity in OA mice produced positive effects for trabecular bone and muscle typology, similar to resistance exercises, but negative effects for cortical bone.


Asunto(s)
Hipergravedad , Sistema Musculoesquelético/patología , Osteoartritis de la Rodilla/terapia , Animales , Hueso Esponjoso/patología , Diáfisis/patología , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/patología , Osteoartritis de la Rodilla/patología , Tibia/patología
15.
Bone ; 138: 115460, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32485361

RESUMEN

BACKGROUND AND OBJECTIVES: Histomorphometric analysis of a transiliac bone biopsy is the gold standard for the diagnosis of renal osteodystrophy (ROD). This procedure is costly, invasive and usually performed with a trephine with an internal diameter of 7.5 mm. Our objective was to evaluate the accuracy of ROD diagnosis on halved histological bone sections to determine if they are comparable to the standard 7.5 mm samples. DESIGN: We included 68 bone biopsies performed in CKD patients for diagnostic purposes with a 7.5 mm diameter trephine. Quantitative histomorphometric analysis of the whole bone samples was performed including assessment of bone mineralization, turnover and volume. Each histological section (representing the whole 7.5 mm diameter biopsy) was then divided lengthwise in two hemisections (representing the 3.5 mm diameter biopsy). Histomorphometric analysis was repeated this time on the two hemibiopsies for each sample, blinded from initial results. Diagnoses were classified as osteitis fibrosa, adynamic bone disease, mixed uremic bone disease, osteomalacia or other. Correlations between the whole sample and the hemibiopsies for each parameter were studied. Concordance between the various bone parameters and final ROD diagnosis obtained from the whole section versus the two hemi sections was evaluated. RESULTS: Highly significant correlations were found between parameters measured on the whole section and the corresponding hemisections, with r coefficient of 0.98 for osteoid surface and thickness and bone formation rate, 0.97 for osteoclast surface, and 0.96 for bone volume (p < 0.001). Final diagnosis was in full accordance between the whole biopsy and the two corresponding hemi-biopsies in 91% of cases. CONCLUSIONS: Accurate diagnosis of ROD type was obtained by evaluation of bone surface areas of 3 mm diameter. These data suggest that small invasive bone biopsies might provide accurate ROD diagnostics while decreasing both invasiveness and cost of the procedure.


Asunto(s)
Enfermedades Óseas , Trastorno Mineral y Óseo Asociado a la Enfermedad Renal Crónica , Osteomalacia , Biopsia , Trastorno Mineral y Óseo Asociado a la Enfermedad Renal Crónica/diagnóstico , Humanos , Ilion/diagnóstico por imagen
16.
Nephrol Ther ; 16(2): 118-123, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31791898

RESUMEN

INTRODUCTION: Severe uncontrolled secondary hyperparathyroidism and kidney transplantation history are both risk factors for fractures in hemodialyzed patients. Moreover, patients who return to dialysis after transplant failure have more severe infections/anemia and higher mortality risk than transplant-naive patients starting dialysis with native kidneys. In this context, our aim was to test the hypothesis that transplant failure patients have more secondary hyperparathyroidism than transplant-naive patients. METHODS: We retrospectively compared 29 transplant failure patients to 58 transplant-naive patients matched for age, sex, chronic kidney disease duration and diabetes condition (1 transplant failure/2 transplant-naive ratio), who started dialysis between 2010 and 2014. Clinical and biological data were collected at baseline, 6 and 12 months. FINDINGS: At baseline, neither serum parathyroid hormone (transplant-naive: 386±286pg/mL; transplant failure: 547±652pg/mL) nor serum 25-hydroxyvitamin D (transplant-naive: 27.8±17.0µg/L, transplant failure: 31.1±14.9µg/L) differed between groups. However, serum parathyroid hormone at 12 months and the proportion of patients with uncontrolled secondary hyperparathyroidism (parathyroid hormone>540pg/mL, KDIGO criteria) were significantly higher in transplant failure than in transplant-naive (parathyroid hormone: 286±205 vs. 462±449, P<0.01; uncontrolled secondary hyperparathyroidism: 30% vs. 13%, P<0.01, respectively). Within the transplant failure group, patients with uncontrolled secondary hyperparathyroidism at 12 months were younger than patients with normal or low parathyroid hormone. DISCUSSION: This retrospective and monocentric study suggests that transplant failure patients are more likely to develop secondary hyperparathyroidism. Thus, finding high serum parathyroid hormone in young transplant failure patients, who are expected to undergo further transplantations, should incite physicians to treat early and more aggressively this complication.


Asunto(s)
Hiperparatiroidismo Secundario/epidemiología , Trasplante de Riñón , Complicaciones Posoperatorias/epidemiología , Diálisis Renal , Insuficiencia Renal Crónica/cirugía , Insuficiencia del Tratamiento , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Complicaciones Posoperatorias/etiología , Estudios Retrospectivos
17.
J Bone Miner Res ; 34(8): 1487-1501, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30920026

RESUMEN

Intermittent parathyroid hormone (iPTH) is anti-osteoporotic and affects bone vessels. Transitional capillaries close to the bone surface, which express both endomucin (Edm) and CD31, bear leptin receptor-expressing (LepR) perivascular cells that may differentiate into osteoblasts. Increased numbers of type H endothelial cells (THEC; ie, Edmhi /CD31hi cells assessed by flow cytometry, FACS) are associated with higher bone formation in young mice. We hypothesized that iPTH administration impacts transitional vessels by expanding THECs. Four-month-old C57/Bl6J female mice were injected with PTH 1-84 (100 µg/kg/d) or saline (CT) for 7 or 14 days. We quantified LepR+ , CD31+ , Edm+ cells and THECs by FACS in hindlimb bone marrow, and Edm/LepR double immunolabelings on tibia cryosections. Additionally, we analyzed bone mRNA expression of 87 angiogenesis-related genes in mice treated with either intermittent or continuous PTH (iPTH/cPTH) or saline (CT) for 7, 14, and 28 days. iPTH dramatically decreased the percentage of THECs by 78% and 90% at days 7 and 14, respectively, and of LepR+ cells at day 14 (-46%) versus CT. Immunolabeling quantification showed that the intracortical Edm+ -vessel density increased at day 14 under iPTH. In the bone marrow, perivascular LepR+ cells, connected to each other via a dendrite network, were sparser under iPTH at day 14 (-58%) versus CT. iPTH decreased LepR+ cell coverage of transitional vessels only (-51%), whereas the number of LepR+ cells not attached to vessels increased in the endocortical area only (+ 49%). Transcriptomic analyses showed that iPTH consistently upregulated PEDF, Collagen-18α1, and TIMP-1 mRNA expression compared with CT and cPTH. Finally, iPTH increased immunolabeling of endostatin, a Collagen-18 domain that can be cleaved and become antiangiogenic, in both endocortical (79%) and peritrabecular transitional microvessels at day 14. Our results show that iPTH specifically remodels transitional vessels and suggest that it promotes LepR+ cell mobilization from these vessels close to the bone surface. © 2019 American Society for Bone and Mineral Research.


Asunto(s)
Huesos/irrigación sanguínea , Regulación de la Expresión Génica/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Hormona Paratiroidea/farmacología , Pericitos/metabolismo , Receptores de Leptina/metabolismo , Animales , Huesos/citología , Huesos/metabolismo , Femenino , Ratones , Pericitos/citología
18.
Joint Bone Spine ; 86(5): 589-593, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30742929

RESUMEN

Osteogenesis imperfecta (OI) is a genetic disease whose clinical phenotype and severity vary considerably. The increased risk of fractures due to bone fragility persists in adulthood, notably after 40 years of age, albeit at a lower level than during growth. Adults with OI require periodic evaluations of the other manifestations of OI including hearing loss, respiratory impairments, ocular and dental abnormalities, and cardiovascular disease. Follow-up should therefore be provided by a multidisciplinary team, at intervals tailored to disease severity. Currently used treatments for OI have not been proven to decrease the fracture risk but are consistently effective in increasing bone mineral density. Specific orthopedic expertise is often required to treat fractures in patients with OI. A combination of periodic evaluations, chronic pain control, and disability management is necessary to improve quality of life.


Asunto(s)
Difosfonatos/uso terapéutico , Manejo de la Enfermedad , Osteogénesis Imperfecta/terapia , Modalidades de Fisioterapia , Adulto , Conservadores de la Densidad Ósea/uso terapéutico , Humanos , Procedimientos Ortopédicos , Calidad de Vida
19.
Kidney Int ; 95(3): 484-486, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30784653
20.
PLoS One ; 13(6): e0199140, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29912988

RESUMEN

BACKGROUND: Secondary hyperparathyroidism (SHPT) is a frequent complication of renal disease and most commonly occurs in patients on haemodialysis (HD) with metabolic, vascular, endocrine, and bone complications. The aim of this study was to analyze the evolution of mineral metabolism parameters during the first 36 months of HD treatment and identify the initial factors associated with severe SHPT. METHODS: Serum parathyroid hormone (PTH), calcium and phosphate levels were measured monthly; bone-specific alkaline phosphatase (b-ALP) and beta-CrossLaps (CTX) were measured biannually. Severe SHPT was defined as the need for cinacalcet treatment. Patients with less than 24 months of follow-up were excluded. RESULTS: One hundred thirty-three incident HD patients were included. Baseline mean PTH was 275 ± 210 pg/mL. After an initial drop at the third month (172 ± 133 pg/mL), the serum PTH level progressively increased to the maximum at 36 months (367 ± 254 pg/mL). This initial drop was associated with the initial correction of both hypocalcaemia and hyperphosphataemia. Serum CTX and b-ALP revealed no significant changes over time. Severe SHPT was observed in 18% of patients and was associated with higher mean calcaemia and phosphataemia. In logistic regression, the initial factors associated with the risk of severe SHPT were: female sex, higher baseline PTH and CTX values. A receiver operation characteristic curve analysis identified a cut-off value of >374 pg/mL for baseline PTH and >1.2 µg/L for CTX for increased risk of developing severe SHPT. The relative risk of developing severe SHPT was 3.7 (1.8-7.5, p = 0.002) for high baseline CTX, 4.9 (2.4-9.7, p = 0.001) for high baseline PTH, and 7.7 (3.6-16, p< 0.0001) when both criteria were present. CONCLUSION: After an initial drop, a progressive increase in the serum PTH level during the first 3 years of HD treatment was observed despite aggressive therapy. High baseline levels of PTH and CTX increased the risk of developing severe SHPT.


Asunto(s)
Colágeno Tipo I/sangre , Hiperparatiroidismo Secundario/etiología , Hormona Paratiroidea/sangre , Péptidos/sangre , Diálisis Renal/efectos adversos , Anciano , Fosfatasa Alcalina/sangre , Calcio/sangre , Femenino , Humanos , Hiperparatiroidismo Secundario/sangre , Masculino , Fosfatos/sangre , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...