Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 29(5): 1267-1281, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36353841

RESUMEN

Long-term atmospheric CO2 concentration records have suggested a reduction in the positive effect of warming on high-latitude carbon uptake since the 1990s. A variety of mechanisms have been proposed to explain the reduced net carbon sink of northern ecosystems with increased air temperature, including water stress on vegetation and increased respiration over recent decades. However, the lack of consistent long-term carbon flux and in situ soil moisture data has severely limited our ability to identify the mechanisms responsible for the recent reduced carbon sink strength. In this study, we used a record of nearly 100 site-years of eddy covariance data from 11 continuous permafrost tundra sites distributed across the circumpolar Arctic to test the temperature (expressed as growing degree days, GDD) responses of gross primary production (GPP), net ecosystem exchange (NEE), and ecosystem respiration (ER) at different periods of the summer (early, peak, and late summer) including dominant tundra vegetation classes (graminoids and mosses, and shrubs). We further tested GPP, NEE, and ER relationships with soil moisture and vapor pressure deficit to identify potential moisture limitations on plant productivity and net carbon exchange. Our results show a decrease in GPP with rising GDD during the peak summer (July) for both vegetation classes, and a significant relationship between the peak summer GPP and soil moisture after statistically controlling for GDD in a partial correlation analysis. These results suggest that tundra ecosystems might not benefit from increased temperature as much as suggested by several terrestrial biosphere models, if decreased soil moisture limits the peak summer plant productivity, reducing the ability of these ecosystems to sequester carbon during the summer.


Asunto(s)
Secuestro de Carbono , Ecosistema , Suelo , Dióxido de Carbono/análisis , Tundra , Regiones Árticas , Ciclo del Carbono , Plantas , Carbono/análisis
2.
Sci Rep ; 12(1): 3986, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35314726

RESUMEN

Arctic warming is affecting snow cover and soil hydrology, with consequences for carbon sequestration in tundra ecosystems. The scarcity of observations in the Arctic has limited our understanding of the impact of covarying environmental drivers on the carbon balance of tundra ecosystems. In this study, we address some of these uncertainties through a novel record of 119 site-years of summer data from eddy covariance towers representing dominant tundra vegetation types located on continuous permafrost in the Arctic. Here we found that earlier snowmelt was associated with more tundra net CO2 sequestration and higher gross primary productivity (GPP) only in June and July, but with lower net carbon sequestration and lower GPP in August. Although higher evapotranspiration (ET) can result in soil drying with the progression of the summer, we did not find significantly lower soil moisture with earlier snowmelt, nor evidence that water stress affected GPP in the late growing season. Our results suggest that the expected increased CO2 sequestration arising from Arctic warming and the associated increase in growing season length may not materialize if tundra ecosystems are not able to continue sequestering CO2 later in the season.


Asunto(s)
Secuestro de Carbono , Ecosistema , Regiones Árticas , Dióxido de Carbono , Cambio Climático , Plantas , Estaciones del Año , Suelo , Tundra
3.
Glob Chang Biol ; 27(17): 4040-4059, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33913236

RESUMEN

The regional variability in tundra and boreal carbon dioxide (CO2 ) fluxes can be high, complicating efforts to quantify sink-source patterns across the entire region. Statistical models are increasingly used to predict (i.e., upscale) CO2 fluxes across large spatial domains, but the reliability of different modeling techniques, each with different specifications and assumptions, has not been assessed in detail. Here, we compile eddy covariance and chamber measurements of annual and growing season CO2 fluxes of gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem exchange (NEE) during 1990-2015 from 148 terrestrial high-latitude (i.e., tundra and boreal) sites to analyze the spatial patterns and drivers of CO2 fluxes and test the accuracy and uncertainty of different statistical models. CO2 fluxes were upscaled at relatively high spatial resolution (1 km2 ) across the high-latitude region using five commonly used statistical models and their ensemble, that is, the median of all five models, using climatic, vegetation, and soil predictors. We found the performance of machine learning and ensemble predictions to outperform traditional regression methods. We also found the predictive performance of NEE-focused models to be low, relative to models predicting GPP and ER. Our data compilation and ensemble predictions showed that CO2 sink strength was larger in the boreal biome (observed and predicted average annual NEE -46 and -29 g C m-2  yr-1 , respectively) compared to tundra (average annual NEE +10 and -2 g C m-2  yr-1 ). This pattern was associated with large spatial variability, reflecting local heterogeneity in soil organic carbon stocks, climate, and vegetation productivity. The terrestrial ecosystem CO2 budget, estimated using the annual NEE ensemble prediction, suggests the high-latitude region was on average an annual CO2 sink during 1990-2015, although uncertainty remains high.


Asunto(s)
Dióxido de Carbono , Ecosistema , Carbono , Dióxido de Carbono/análisis , Reproducibilidad de los Resultados , Estaciones del Año , Suelo , Tundra , Incertidumbre
4.
Sci Total Environ ; 711: 134632, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31810664

RESUMEN

We compared greenhouse gas (GHG) fluxes and albedo of a pristine boreal bog and an adjacent abandoned peatland pasture in western Newfoundland, Canada to estimate the magnitude of radiative forcing (RF) created by agricultural drainage and abandonment. Our results indicated that these anthropogenic activities induced a climate cooling effect (negative RF), with the magnitude of the RF caused by the albedo change comparable to that induced by altered GHGs. Although the albedo-induced RF was positive in winter and negative in summer, the summer effect dominated because of greater solar radiation received. The climate cooling effect of GHGs change was due to an increase in the carbon dioxide sink capacity and a reduction in methane emissions under lower water table levels following agricultural drainage and abandonment. Calculation of sustained-flux global warming/cooling potentials also supported this finding. Our results show that the overall increase in albedo resulting from agricultural drainage and abandonment contributes significantly to the negative RF, strengthening the cooling effect due to the changing GHG fluxes. Therefore, changes in albedo due to altered vegetation coverage and hydrology and GHG fluxes should be considered when assessing the climatic impacts from land-use change in northern peatland.


Asunto(s)
Agricultura , Humedales , Canadá , Dióxido de Carbono , Calentamiento Global , Metano , Terranova y Labrador
5.
Environ Sci Technol ; 46(15): 7971-7, 2012 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-22779925

RESUMEN

Tundra ecosystems store vast amounts of soil organic carbon, which may be sensitive to climatic change. Net ecosystem production, NEP, is the net exchange of carbon dioxide (CO(2)) between landscapes and the atmosphere, and represents the balance between CO(2) uptake by photosynthesis and release by decomposition and autotrophic respiration. Here we examine CO(2) exchange across seven sites in the Canadian low and high Arctic during the peak growing season (July) in summer 2008. All sites were net sinks for atmospheric CO(2) (NEP ranged from 5 to 67 g C m(-2)), with low Arctic sites being substantially larger CO(2) sinks. The spatial difference in NEP between low and high Arctic sites was determined more by CO(2) uptake via gross ecosystem production than by CO(2) release via ecosystem respiration. Maximum gross ecosystem production at the low Arctic sites (average 8.6 µmol m(-2) s(-1)) was about 4 times larger than for high Arctic sites (average 2.4 µmol m(-2) s(-1)). NEP decreased with increasing temperature at all low Arctic sites, driven largely by the ecosystem respiration response. No consistent temperature response was found for the high Arctic sites. The results of this study clearly indicate there are large differences in tundra CO(2) exchange between high and low Arctic environments and this difference should be a central consideration in studies of Arctic carbon balance and climate change.


Asunto(s)
Ecosistema , Estaciones del Año , Regiones Árticas , Canadá , Dióxido de Carbono/análisis , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...