Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Endocrinology ; 165(1)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37934802

RESUMEN

Detection of circulating TSH is a first-line test of thyroid dysfunction, a major health problem (affecting about 5% of the population) that, if untreated, can lead to a significant deterioration of quality of life and adverse effects on multiple organ systems. Human TSH levels display both pulsatile and (nonpulsatile) basal TSH secretion patterns; however, the importance of these in regulating thyroid function and their decoding by the thyroid is unknown. Here, we developed a novel ultra-sensitive ELISA that allows precise detection of TSH secretion patterns with minute resolution in mouse models of health and disease. We characterized the patterns of ultradian TSH pulses in healthy, freely behaving mice over the day-night cycle. Challenge of the thyroid axis with primary hypothyroidism because of iodine deficiency, a major cause of thyroid dysfunction worldwide, results in alterations of TSH pulsatility. Induction in mouse models of sequential TSH pulses that mimic ultradian TSH profiles in periods of minutes were more efficient than sustained rises in basal TSH levels at increasing both thyroid follicle cAMP levels, as monitored with a genetically encoded cAMP sensor, and circulating thyroid hormone. Hence, this mouse TSH assay provides a powerful tool to decipher how ultradian TSH pulses encode thyroid outcomes and to uncover hidden parameters in the TSH-thyroid hormone set-point in health and disease.


Asunto(s)
Hipotiroidismo , Enfermedades de la Tiroides , Ratones , Humanos , Animales , Receptores de Tirotropina , Tirotropina , Tiroxina , Calidad de Vida , Hormonas Tiroideas/farmacología
2.
JCI Insight ; 8(3)2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36574295

RESUMEN

Central integration of peripheral appetite-regulating signals ensures maintenance of energy homeostasis. Thus, plasticity of circulating molecule access to neuronal circuits involved in feeding behavior plays a key role in the adaptive response to metabolic changes. However, the mechanisms involved remain poorly understood despite their relevance for therapeutic development. Here, we investigated the role of median eminence mural cells, including smooth muscle cells and pericytes, in modulating gut hormone effects on orexigenic/anorexigenic circuits. We found that conditional activation of median eminence vascular cells impinged on local blood flow velocity and altered ghrelin-stimulated food intake by delaying ghrelin access to target neurons. Thus, activation of median eminence vascular cells modulates food intake in response to peripheral ghrelin by reducing local blood flow velocity and access to the metabolic brain.


Asunto(s)
Ghrelina , Eminencia Media , Eminencia Media/metabolismo , Apetito/fisiología , Conducta Alimentaria , Ingestión de Alimentos
3.
Front Endocrinol (Lausanne) ; 13: 918733, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35813647

RESUMEN

Pancreatic islets are highly vascularized micro-organs ensuring whole body glucose homeostasis. Islet vascular cells play an integral part in sustaining adequate insulin release by beta cells. In particular, recent studies have demonstrated that islet pericytes regulate local blood flow velocity and are required for maintenance of beta cell maturity and function. In addition, increased metabolic demand accompanying obesity alters islet pericyte morphology. Here, we sought to explore the effects of metabolic stress on islet pericyte functional response to stimulation in a mouse model of type 2 diabetes, directly in the pancreas in vivo . We found that high fat diet induced islet pericyte hypertrophy without alterations in basal local blood flow. However, optogenetic stimulation of pericyte activity revealed impaired islet vascular responses, despite increased expression of genes encoding proteins directly or indirectly involved in cell contraction. These findings suggest that metabolic stress impinges upon islet pericyte function, which may contribute to beta cell failure during T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Islotes Pancreáticos , Animales , Diabetes Mellitus Tipo 2/metabolismo , Islotes Pancreáticos/metabolismo , Ratones , Optogenética , Pericitos , Estrés Fisiológico
4.
J Neurosci Methods ; 343: 108808, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32569784

RESUMEN

Functional imaging in behaving animals is essential to explore brain functions. Real-time optical imaging of brain functions is limited by light scattering, skull distortion, timing resolution and subcellular precision that altogether, make challenging the rapid acquisition of uncorrupted functional data of cells integrated de novo in the neurogliovascular unit. We report multimodal transcranial in vivo optical imaging for the fast and direct visualization of microcirculation in the perfusion domain where new cells incorporated in the neurogliovascular unit during the progression of a seizure disorder and its treatment. Using this methodology, we explored the performance improvement of cells integrated de novo in the neurogliovascular unit. We report fast transcranial imaging of blood microcirculation at sites of pericyte turnover in the epileptic brain and after treatment with a trophic factor that revealed key features of the regenerating neurogliovascular unit.


Asunto(s)
Encéfalo , Pericitos , Animales , Encéfalo/diagnóstico por imagen , Neuroglía , Neuronas , Regeneración
5.
J Control Release ; 317: 34-42, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31734445

RESUMEN

A compound's intratumoural distribution is an important determinant for the effectiveness of molecular therapy or imaging. Antibodies (Abs), though often used in the design of targeted compounds, struggle to achieve a homogenous distribution due to their large size and bivalent binding mechanism. In contrast, smaller compounds like nanobodies (Nbs) are expected to distribute more homogenously, though this has yet to be demonstrated in vivo at the microscopic level. We propose an intravital approach to evaluate the intratumoural distribution of different fluorescently labeled monomeric and dimeric Nb tracers and compare this with a monoclonal antibody (mAb). Monomeric and dimeric formats of the anti-HER2 (2Rb17c and 2Rb17c-2Rb17c) and control (R3B23 and R3B23-R3B23) Nb, as well as the dimeric monovalent Nb 2Rb17c-R3B23 were generated and fluorescently labeled with a Cy5 fluorophore. The mAb trastuzumab-Cy5 was also prepared. Whole-body biodistribution of all constructs was investigated in mice bearing subcutaneous xenografts (HER2+ SKOV3) using in vivo epi-fluorescence imaging. Next, for intravital experiments, GFP-expressing SKOV3 cells were grown under dorsal window chambers on athymic nude mice (n = 3/group), and imaged under a fluorescence stereo microscope immediately after intravenous injection of the tracers. Consecutive fluorescence images within the tumour were acquired over the initial 20 min after injection and later, single images were taken at 1, 3 and 24 h post-injection. Additionally, two-photon microscopy was used to investigate the colocalization of GFP (tumour cells) and Cy5 fluorescence (tracers) at higher resolution. Whole-body images showed rapid renal clearance of all Nbs, and fast tumour targeting for the specific Nbs. Specific tumour uptake of the mAb could only be clearly distinguished from background after several hours. Intravital imaging revealed that monomeric Nb tracers accumulated rapidly and distributed homogenously in the tumour mere minutes after intravenous injection. The dimeric compounds initially achieved lower fluorescence intensities than the monomeric. Furthermore, whereas the HER2-specific dimeric bivalent compound remained closely associated to the blood vessels over 24 h, the HER2-specific dimeric monovalent tracer achieved a more homogenous tumour distribution from 1 h post-injection onwards. Non-specific tracers were not retained in the tumour. Trastuzumab had the most heterogenous intratumoural distribution of all evaluated compounds, while -due to the long blood retention- achieving the highest overall tumour uptake at 24 h post-injection. In conclusion, monomeric Nbs very quickly and homogenously distribute through tumour tissue, at a rate significantly greater than dimeric Nbs and mAbs. This underlines the potential of monomeric Nb tracers and therapeutics in molecular imaging and targeted therapies.


Asunto(s)
Anticuerpos de Dominio Único , Animales , Línea Celular Tumoral , Cinética , Ratones , Ratones Desnudos , Receptor ErbB-2/metabolismo , Anticuerpos de Dominio Único/metabolismo , Distribución Tisular
6.
Endocrinology ; 160(10): 2271-2281, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31329247

RESUMEN

Extensive efforts have been made to explore how the activities of multiple brain cells combine to alter physiology through imaging and cell-specific manipulation in different animal models. However, the temporal regulation of peripheral organs by the neuroendocrine factors released by the brain is poorly understood. We have established a suite of adaptable methodologies to interrogate in vivo the relationship of hypothalamic regulation with the secretory output of the pituitary gland, which has complex functional networks of multiple cell types intermingled with the vasculature. These allow imaging and optogenetic manipulation of cell activities in the pituitary gland in awake mouse models, in which both neuronal regulatory activity and hormonal output are preserved. These methodologies are now readily applicable for longitudinal studies of short-lived events (e.g., calcium signals controlling hormone exocytosis) and slowly evolving processes such as tissue remodeling in health and disease over a period of days to weeks.


Asunto(s)
Señalización del Calcio/fisiología , Imagen Óptica/métodos , Hipófisis/fisiología , Vigilia , Animales , Hormona del Crecimiento , Luz , Ratones , Ratones Endogámicos C57BL , Optogenética , Hipófisis/irrigación sanguínea
7.
Cell Rep ; 23(4): 1045-1059, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29694884

RESUMEN

Reorganization of the neurovascular unit has been suggested in the epileptic brain, although the dynamics and functional significance remain unclear. Here, we tracked the in vivo dynamics of perivascular mural cells as a function of electroencephalogram (EEG) activity following status epilepticus. We segmented the cortical vascular bed to provide a size- and type-specific analysis of mural cell plasticity topologically. We find that mural cells are added and removed from veins, arterioles, and capillaries after seizure induction. Loss of mural cells is proportional to seizure severity and vascular pathology (e.g., rigidity, perfusion, and permeability). Treatment with platelet-derived growth factor subunits BB (PDGF-BB) reduced mural cell loss, vascular pathology, and epileptiform EEG activity. We propose that perivascular mural cells play a pivotal role in seizures and are potential targets for reducing pathophysiology.


Asunto(s)
Becaplermina/metabolismo , Permeabilidad Capilar , Arterias Cerebrales , Venas Cerebrales , Estado Epiléptico , Animales , Becaplermina/genética , Arterias Cerebrales/metabolismo , Arterias Cerebrales/patología , Arterias Cerebrales/fisiopatología , Venas Cerebrales/metabolismo , Venas Cerebrales/patología , Venas Cerebrales/fisiopatología , Electroencefalografía , Ratones , Ratones Transgénicos , Estado Epiléptico/genética , Estado Epiléptico/metabolismo , Estado Epiléptico/patología , Estado Epiléptico/fisiopatología
8.
Int J Cancer ; 140(9): 2150-2161, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28152577

RESUMEN

Angiogenesis contributes in multiple ways to disease progression in tumors and reduces treatment efficiency. Molecular therapies targeting Vegf signaling combined with chemotherapy or other drugs exhibit promising results to improve efficacy of treatment. Dopamine has been recently proposed to be a novel safe anti-angiogenic drug that stabilizes abnormal blood vessels and increases therapeutic efficacy. Here, we aimed to identify a treatment to normalize tumoral vessels and restore normal blood perfusion in tumor tissue with a Vegf receptor inhibitor and/or a ligand of dopamine G protein-coupled receptor D2 (D2R). Dopamine, via its action on D2R, is an endogenous effector of the pituitary gland, and we took advantage of this system to address this question. We have used a previously described Hmga2/T mouse model developing haemorrhagic prolactin-secreting adenomas. In mutant mice, blood vessels are profoundly altered in tumors, and an aberrant arterial vascularization develops leading to the loss of dopamine supply. D2R agonist treatment blocks tumor growth, induces regression of the aberrant blood supply and normalizes blood vessels. A chronic treatment is able to restore the altered balance between pro- and anti-angiogenic factors. Remarkably, an acute treatment induces an upregulation of the stabilizing factor Angiopoietin 1. An anti-Vegf therapy is also effective to restrain tumor growth and improves vascular remodeling. Importantly, only the combination treatment suppresses intratumoral hemorrhage and restores blood vessel perfusion, suggesting that it might represent an attractive therapy targeting tumor vasculature. Similar strategies targeting other ligands of GPCRs involved in angiogenesis may identify novel therapeutic opportunities for cancer.


Asunto(s)
Neoplasias/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Receptores de Dopamina D2/agonistas , Factor A de Crecimiento Endotelial Vascular/genética , Inhibidores de la Angiogénesis/administración & dosificación , Angiopoyetina 1/genética , Angiopoyetina 1/metabolismo , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Bevacizumab/administración & dosificación , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Neoplasias/genética , Neoplasias/patología , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Receptores de Dopamina D2/genética , Receptores de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptores de Factores de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores
9.
Nat Rev Endocrinol ; 13(5): 257-267, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27934864

RESUMEN

The discoveries of novel functional adaptations of the hypothalamus and anterior pituitary gland for physiological regulation have transformed our understanding of their interaction. The activity of a small proportion of hypothalamic neurons can control complex hormonal signalling, which is disconnected from a simple stimulus and the subsequent hormone secretion relationship and is dependent on physiological status. The interrelationship of the terminals of hypothalamic neurons and pituitary cells with the vasculature has an important role in determining the pattern of neurohormone exposure. Cells in the pituitary gland form networks with distinct organizational motifs that are related to the duration and pattern of output, and modifications of these networks occur in different physiological states, can persist after cessation of demand and result in enhanced function. Consequently, the hypothalamus and pituitary can no longer be considered as having a simple stratified relationship: with the vasculature they form a tripartite system, which must function in concert for appropriate hypothalamic regulation of physiological processes, such as reproduction. An improved understanding of the mechanisms underlying these regulatory features has implications for current and future therapies that correct defects in hypothalamic-pituitary axes. In addition, recapitulating proper network organization will be an important challenge for regenerative stem cell treatment.


Asunto(s)
Sistema Hipotálamo-Hipofisario/fisiología , Hipotálamo/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Animales , Humanos , Hipófisis/fisiología , Sistema Hipófiso-Suprarrenal/fisiología
10.
Artículo en Inglés | MEDLINE | ID: mdl-24324458

RESUMEN

The cyclic peptide Melanin Concentrating Hormone (MCH) is known to control a large number of brain functions in mammals such as food intake and metabolism, stress response, anxiety, sleep/wake cycle, memory, and reward. Based on neuro-anatomical and electrophysiological studies these functions were attributed to neuronal circuits expressing MCHR1, the single MCH receptor in rodents. In complement to our recently published work (1) we provided here new data regarding the action of MCH on ependymocytes in the mouse brain. First, we establish that MCHR1 mRNA is expressed in the ependymal cells of the third ventricle epithelium. Second, we demonstrated a tonic control of MCH-expressing neurons on ependymal cilia beat frequency using in vitro optogenics. Finally, we performed in vivo measurements of CSF flow using fluorescent micro-beads in wild-type and MCHR1-knockout mice. Collectively, our results demonstrated that MCH-expressing neurons modulate ciliary beating of ependymal cells at the third ventricle and could contribute to maintain cerebro-spinal fluid homeostasis.

11.
Proc Natl Acad Sci U S A ; 110(4): 1512-7, 2013 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-23297228

RESUMEN

To maintain homeostasis, hypothalamic neurons in the arcuate nucleus must dynamically sense and integrate a multitude of peripheral signals. Blood-borne molecules must therefore be able to circumvent the tightly sealed vasculature of the blood-brain barrier to rapidly access their target neurons. However, how information encoded by circulating appetite-modifying hormones is conveyed to central hypothalamic neurons remains largely unexplored. Using in vivo multiphoton microscopy together with fluorescently labeled ligands, we demonstrate that circulating ghrelin, a versatile regulator of energy expenditure and feeding behavior, rapidly binds neurons in the vicinity of fenestrated capillaries, and that the number of labeled cell bodies varies with feeding status. Thus, by virtue of its vascular connections, the hypothalamus is able to directly sense peripheral signals, modifying energy status accordingly.


Asunto(s)
Regulación del Apetito/fisiología , Ghrelina/sangre , Hipotálamo/fisiología , Animales , Barrera Hematoencefálica/fisiología , Permeabilidad Capilar , Ingestión de Alimentos/fisiología , Ayuno/fisiología , Hipotálamo/irrigación sanguínea , Hipotálamo/citología , Masculino , Eminencia Media/irrigación sanguínea , Eminencia Media/citología , Eminencia Media/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía de Fluorescencia por Excitación Multifotónica , Modelos Neurológicos , Neuronas/fisiología
12.
Trends Endocrinol Metab ; 23(6): 261-9, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22436593

RESUMEN

Recent advances in tridimensional (3D) tissue imaging have considerably enriched our view of the pituitary gland and its development. Whereas traditional histology of the pituitary anterior lobe portrayed this tissue as a patchwork of cells, 3D imaging revealed that cells of each lineage form extensive and structured homotypic networks. In the adult gland these networks contribute to the robustness and coordination of the cell response to secretagogs. In addition, the network organization adapts to changes in endocrine environment, as revealed by the sexually dimorphic growth hormone (GH) cell network. Further work is required to establish better the molecular basis for homotypic and heterotypic interactions in the pituitary as well as the implications of these interactions for pituitary function and dysfunction in humans.


Asunto(s)
Imagenología Tridimensional/tendencias , Hipófisis/embriología , Hipófisis/fisiología , Animales , Comunicación Celular/fisiología , Diferenciación Celular/fisiología , Humanos , Ratones , Hipófisis/citología , Adenohipófisis/citología , Adenohipófisis/embriología , Adenohipófisis/fisiología , Transducción de Señal/fisiología
13.
Nat Commun ; 3: 605, 2012 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-22215080

RESUMEN

Experience-dependent plasticity of cell and tissue function is critical for survival by allowing organisms to dynamically adjust physiological processes in response to changing or harsh environmental conditions. Despite the conferred evolutionary advantage, it remains unknown whether emergent experience-dependent properties are present in cell populations organized as networks within endocrine tissues involved in regulating body-wide homeostasis. Here we show, using lactation to repeatedly activate a specific endocrine cell network in situ in the mammalian pituitary, that templates of prior demand are permanently stored through stimulus-evoked alterations to the extent and strength of cell-cell connectivity. Strikingly, following repeat stimulation, evolved population behaviour leads to improved tissue output. As such, long-lasting experience-dependent plasticity is an important feature of endocrine cell networks and underlies functional adaptation of hormone release.


Asunto(s)
Sistema Endocrino/fisiología , Hipófisis/fisiología , Adaptación Fisiológica/fisiología , Animales , Calcio/química , Calcio/metabolismo , Comunicación Celular , Femenino , Homeostasis , Lactancia , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Biológicos , Modelos Teóricos , Fotones
14.
Cell Calcium ; 51(3-4): 222-30, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22172406

RESUMEN

The pulsatile secretion of hormones from the mammalian pituitary gland drives a wide range of homeostatic responses by dynamically altering the functional set-point of effector tissues. To accomplish this, endocrine cell populations residing within the intact pituitary display large-scale changes in coordinated calcium-spiking activity in response to various hypothalamic and peripheral inputs. Although the pituitary gland is structurally compartmentalized into specific and intermingled endocrine cell networks, providing a clear morphological basis for such coordinated activity, the mechanisms which facilitate the timely propagation of information between cells in situ remain largely unexplored. Therefore, the aim of the current review is to highlight the range of signalling modalities known to be employed by endocrine cells to coordinate intracellular calcium rises, and discuss how these mechanisms are integrated at the population level to orchestrate cell function and tissue output.


Asunto(s)
Señalización del Calcio , Células Endocrinas/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Animales , Comunicación Celular , Homeostasis , Humanos , Receptor Cross-Talk
15.
Endocrinology ; 152(12): 4789-99, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21952249

RESUMEN

The secretion of endocrine hormones from pituitary cells finely regulates a multitude of homeostatic processes. To dynamically adapt to changing physiological status and environmental stimuli, the pituitary gland must undergo marked structural and functional plasticity. Endocrine cell plasticity is thought to primarily rely on variations in cell proliferation and size. However, cell motility, a process commonly observed in a variety of tissues during development, may represent an additional mechanism to promote plasticity within the adult pituitary gland. To investigate this, we used multiphoton time-lapse imaging methods, GH-enhanced green fluorescent protein transgenic mice and sexual dimorphism of the GH axis as a model of divergent tissue demand. Using these methods to acutely (12 h) track cell dynamics, we report that ovariectomy induces a dramatic and dynamic increase in cell motility, which is associated with gross GH-cell network remodeling. These changes can be prevented by estradiol supplementation and are associated with enhanced network connectivity as evidenced by increased coordinated GH-cell activity during multicellular calcium recordings. Furthermore, cell motility appears to be sex-specific, because reciprocal alterations are not detected in males after castration. Therefore, GH-cell motility appears to play an important role in the structural and functional pituitary plasticity, which is evoked in response to changing estradiol concentrations in the female.


Asunto(s)
Movimiento Celular , Estrógenos/farmacología , Hormona del Crecimiento/análisis , Hipófisis/citología , Imagen de Lapso de Tiempo , Animales , Femenino , Proteínas Fluorescentes Verdes , Masculino , Ratones , Ratones Transgénicos , Factores Sexuales
16.
Circulation ; 124(12): 1330-6, 2011 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-21875909

RESUMEN

BACKGROUND: Reperfusion during acute myocardial infarction remains the best treatment for reducing infarct size. Postconditioning, applied at the onset of reperfusion, reduces myocardial infarction both in animals and humans. The objective of this study was to identify the time delay to apply postconditioning at reperfusion, allowing preservation of cardioprotection in the mouse myocardium. This is a major issue in the management of acute myocardial infarction patients. METHODS AND RESULTS: Mice were subjected to 40 minutes of ischemia and 60 minutes of reperfusion (IR(60')). Postconditioning protocols corresponding to repetitive ischemia (3 cycles of 1 minute of ischemia and 1 minute of reperfusion) were applied during early reperfusion at various time durations (Δt) after reopening of the coronary artery (Δt=10 seconds, 1, 5, 10, 15, 20, 30, and 45 minutes; PostC(Δt)). Infarct size/area at risk was reduced by 71% in PostC(Δ1) compared with IR(60') mice (P=5×10(-6)). There was a linear correlation (r(2)=0.91) between infarct size and Δt, indicating that the cardioprotective effect of delayed postconditioning was progressively attenuated when Δt time increased. The protective effect of PostC(Δ1) and PostC(Δ15) was still effective when the duration of reperfusion was prolonged to 24 hours (IR(24 hours); PostC(Δ1) and PostC(Δ15) versus IR(24 hours), P=0.001). Similar results were obtained for internucleosomal DNA fragmentation and lactate dehydrogenase release. CONCLUSIONS: This study in our in vivo mouse model of myocardial IR shows for the first time that delaying the intervention of postconditioning to 30 minutes does not abrogate the cardioprotective effect of postconditioning. This finding provides evidence that the time window of protection afforded by postconditioning may be larger than initially reported.


Asunto(s)
Poscondicionamiento Isquémico/métodos , Precondicionamiento Isquémico Miocárdico/métodos , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Infarto del Miocardio/patología , Infarto del Miocardio/terapia , Reperfusión Miocárdica , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/terapia , Miocardio/patología , Factores de Tiempo
17.
Proc Natl Acad Sci U S A ; 108(30): 12515-20, 2011 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-21746936

RESUMEN

The pituitary gland has long been considered to be a random patchwork of hormone-producing cells. By using pituitary-scale tridimensional imaging for two of the least abundant cell lineages, the corticotropes and gonadotropes, we have now uncovered highly organized and interdigitated cell networks that reflect homotypic and heterotypic interactions between cells. Although newly differentiated corticotrope cells appear on the ventral surface of the gland, they rapidly form homotypic strands of cells that extend from the lateral tips of the anterior pituitary along its ventral surface and into the medial gland. As the corticotrope network is established away from the microvasculature, cell morphology changes from rounded, to polygonal, and finally to cells with long cytoplasmic processes or cytonemes that connect corticotropes to the perivascular space. Gonadotropes differentiate later and are positioned in close proximity to corticotropes and capillaries. Blockade of corticotrope terminal differentiation produced by knockout of the gene encoding the transcription factor Tpit results in smaller gonadotropes within an expanded cell network, particularly in the lateral gland. Thus, pituitary-scale tridimensional imaging reveals highly structured cell networks of unique topology for each pituitary lineage. The sequential development of interdigitated cell networks during organogenesis indicate that extensive cell:cell interactions lead to a highly ordered cell positioning rather than random patchwork.


Asunto(s)
Adenohipófisis/anatomía & histología , Adenohipófisis/citología , Animales , Diferenciación Celular , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Imagenología Tridimensional , Hormona Luteinizante/metabolismo , Ratones , Ratones Transgénicos , Adenohipófisis/fisiología , Proopiomelanocortina/genética , Proopiomelanocortina/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Biología de Sistemas
18.
J Mol Endocrinol ; 47(2): R59-66, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21622530

RESUMEN

Hormones are dynamically collected by fenestrated capillaries to generate pulses, which are then decoded by target tissues to mount a biological response. To generate hormone pulses, endocrine systems have evolved mechanisms to tightly regulate blood perfusion and oxygenation, coordinate endocrine cell responses to secretory stimuli, and regulate hormone uptake from the perivascular space into the bloodstream. Based on recent findings, we review here the mechanisms that exist in endocrine systems to regulate blood flow, and facilitate coordinated cell activity and output under both normal physiological and pathological conditions in the pituitary gland and pancreas.


Asunto(s)
Células Endocrinas/metabolismo , Sistema Endocrino/irrigación sanguínea , Sistema Endocrino/metabolismo , Animales , Sistema Endocrino/citología , Humanos , Páncreas/irrigación sanguínea , Páncreas/citología , Páncreas/metabolismo , Hipófisis/irrigación sanguínea , Hipófisis/citología , Hipófisis/metabolismo
19.
Eur J Neurosci ; 32(12): 2087-95, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21143663

RESUMEN

The pulsatile release of hormone is obligatory for the control of a range of important body homeostatic functions. To generate these pulses, endocrine organs have developed finely regulated mechanisms to modulate blood flow both to meet the metabolic demand associated with intense endocrine cell activity and to ensure the temporally precise uptake of secreted hormone into the bloodstream. With a particular focus on the pituitary gland as a model system, we review here the importance of the interplay between blood flow regulation and oxygen tensions in the functioning of endocrine systems, and the known regulatory signals involved in the modification of flow patterns under both normal physiological and pathological conditions.


Asunto(s)
Oxígeno/sangre , Adenohipófisis/irrigación sanguínea , Flujo Sanguíneo Regional/fisiología , Animales , Sistema Endocrino/irrigación sanguínea , Sistema Endocrino/metabolismo , Humanos , Consumo de Oxígeno , Presión Parcial , Adenohipófisis/citología , Hormonas Adenohipofisarias/metabolismo
20.
Proc Natl Acad Sci U S A ; 107(50): 21878-83, 2010 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-21098290

RESUMEN

There are well-recognized sex differences in many pituitary endocrine axes, usually thought to be generated by gonadal steroid imprinting of the neuroendocrine hypothalamus. However, the recognition that growth hormone (GH) cells are arranged in functionally organized networks raises the possibility that the responses of the network are different in males and females. We studied this by directly monitoring the calcium responses to an identical GH-releasing hormone (GHRH) stimulus in populations of individual GH cells in slices taken from male and female murine GH-eGFP pituitary glands. We found that the GH cell network responses are sexually dimorphic, with a higher proportion of responding cells in males than in females, correlated with greater GH release from male slices. Repetitive waves of calcium spiking activity were triggered by GHRH in some males, but were never observed in females. This was not due to a permanent difference in the network architecture between male and female mice; rather, the sex difference in the proportions of GH cells responding to GHRH were switched by postpubertal gonadectomy and reversed with hormone replacements, suggesting that the network responses are dynamically regulated in adulthood by gonadal steroids. Thus, the pituitary gland contributes to the sexually dimorphic patterns of GH secretion that play an important role in differences in growth and metabolism between the sexes.


Asunto(s)
Hormonas Esteroides Gonadales/metabolismo , Hormona del Crecimiento/metabolismo , Caracteres Sexuales , Animales , Calcio/metabolismo , Señalización del Calcio/fisiología , Femenino , Hormona Liberadora de Hormona del Crecimiento/metabolismo , Masculino , Ratones , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...