Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Biochem Biophys ; 82(2): 1079-1099, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38713404

RESUMEN

In the present investigation, the mechanical properties of mouse normal and carcinomatous (LL/2) lung tissue cells were investigated using atomic force microscopy (AFM). The normal lung cells have been derived directly from C57BL mice. Initially, the elastic modulus of LL/2 cells was measured following chemotherapy with the anti-cancer drug Cisplatin and plasma treatment. MTT evaluation was used to determine the optimal dosages for 24- and 48-h incubations based on the IC50 cell viability concentration during chemotherapy treatment. After 24 and 48 h, the results demonstrated that Cisplatin-based chemotherapy increases the elastic modulus of LL/2 cells by 1.599 and 2.308 times compared to untreated cells. LL/2 cells were subsequently treated with plasma for 30 and 60 s for 24 and 48-h incubation. The plasma treatment decreased the LL/2 cell's elastic modulus, and the time duration of plasma treatment increased the reduction amount of elastic modulus. During the second section of the study, theoretical (finite element analysis [FEM]) and experimental techniques were used to examine the resonant frequencies and magnitude of the frequency response function (FRF) of the AFM cantilever's movements when applying normal and cancerous cells before and after chemo and plasma treatments as specimens. The results indicated that increasing the samples' elastic modulus raises the resonant frequency, so the resonant frequency of treated cells as a sample is greater than untreated cells. In conclusion, the FEM and experimental results were compared and found to be in good agreement.


Asunto(s)
Cisplatino , Módulo de Elasticidad , Pulmón , Ratones Endogámicos C57BL , Microscopía de Fuerza Atómica , Animales , Ratones , Pulmón/citología , Cisplatino/farmacología , Vibración , Antineoplásicos/farmacología , Análisis de Elementos Finitos , Supervivencia Celular/efectos de los fármacos , Línea Celular Tumoral , Gases em Plasma/farmacología , Gases em Plasma/química
2.
Microsc Res Tech ; 87(8): 1704-1717, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38501545

RESUMEN

In the present investigation, the mechanical properties of normal and carcinomatous cells of kidney tissue (HEK-293, ACHN, respectively) were investigated using atomic force microscopy (AFM). Initially, the elastic modulus of ACHN cells was measured following chemotherapy with the anti-cancer drug Cisplatin and plasma treatment. The MTT assay was employed to ascertain the most effective dosages for incubation periods of 12, 24, 48, 72, and 96 h, guided by the IC50 concentration for cell viability during chemotherapy treatment. Analysis at these specified time points revealed a progressive increase in the elastic modulus of ACHN cells when subjected to Cisplatin-based chemotherapy. Specifically, the elastic modulus increased by 1.847, 4.416, 6.035, 8.029, and 9.727 times in comparison to untreated cells at 12, 24, 48, 72, and 96 h, respectively. ACHN cells were subsequently treated with plasma for 30 and 60 s for 24 and 48-h incubation periods. The plasma treatment increased the ACHN cell's elastic modulus. In the subsequent phase of the research, a combination of theoretical (finite element method [FEM]) and experimental methodologies was employed to investigate the resonant frequencies and magnitude of the frequency response function (FRF) concerning the movement of the AFM cantilever. This examination was conducted using ACHN cells as specimens, both before and after exposure to chemotherapy and plasma treatments. The results showed that higher sample elastic modulus increased the resonant frequency, indicating that treated cells had a higher resonant frequency than untreated cells. In conclusion, the FEM and experimental results were compared and found to be in good agreement. HIGHLIGHTS: Using Cisplatin anti-cancer drug increases the elastic modulus of ACHN cell. Applying plasma treatment increases the elastic modulus of ACHN cell. For both of the chemo and plasma therapies, increasing the incubation time increases the influence of therapies oh the cell mechanics. Using finite element modeling (FEM) the real dynamic behavior of atomic force microscope cantilever by considering human kidney cells as the soft samples is possible.


Asunto(s)
Cisplatino , Módulo de Elasticidad , Riñón , Microscopía de Fuerza Atómica , Humanos , Microscopía de Fuerza Atómica/métodos , Riñón/efectos de los fármacos , Riñón/citología , Cisplatino/farmacología , Células HEK293 , Supervivencia Celular/efectos de los fármacos , Vibración , Antineoplásicos/farmacología
3.
Rev Sci Instrum ; 84(5): 053504, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23742548

RESUMEN

In this paper, both Resonant Helical magnetic Field (RHF) and limiter biasing have been applied to the tokamak. We have investigated their effects on the turbulence and transport of the particles at the edge of the plasma. The biased limiter voltage has been fixed at 200 V and RHF has L = 2 and L = 3. Also, the effects of the time order of the application of RHF and biasing to the tokamak have been explored. The experiment has been performed under three conditions. At first, the biasing and RHF were applied at t = 15 ms and at t = 20 ms. In the next step, RHF and biasing were applied at t = 15 ms and t = 20 ms, respectively. Finally, both of them were turned on at t = 15 ms until the end of the shot. For this purpose, the ion saturation current (I(sat)) and the floating potential (V(f)) have been measured by the Langmuir probe at r/a = 0.9. Moreover, the power spectra of I(sat) and floating potential gradient (∇V(f)), the coherency, the phase between them, and the particle diffusion coefficient have been calculated. The density fluctuations of the particles have been measured by the Rake probe and they have been analyzed with the Probability Distribution Function (PDF) technique. Also the particle diffusion coefficient has been determined by the Fick's law. The results show that, when RHF and biasing were applied at the same time to the plasma (during flatness region of plasma current), the radial particle density gradient, the radial particle flux, and the particle diffusion coefficient decrease about 50%, 60%, and 55%, respectively, compared to the other conditions. For more precision, the average values of the particle flux and the particle density gradient were calculated in the work. When the time is less than 15 ms, the average values of the particle flux and the particle density gradient are identical under all conditions, but in the other time interval they change. They reduce with the simultaneous application of biasing and RHF. The same results obtain from the histogram of the particle flux and the gradient of the particle density and the particle diffusion coefficient. Consequently, the simultaneous application of biasing and RHF is more effective for the plasma confinement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA