Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell Proteomics ; 11(1): M111.008730, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21986992

RESUMEN

DC-SIGN is an immune C-type lectin that is expressed on both immature and mature dendritic cells associated with peripheral and lymphoid tissues in humans. It is a pattern recognition receptor that binds to several pathogens including HIV-1, Ebola virus, Mycobacterium tuberculosis, Candida albicans, Helicobacter pylori, and Schistosoma mansoni. Evidence is now mounting that DC-SIGN also recognizes endogenous glycoproteins, and that such interactions play a major role in maintaining immune homeostasis in humans and mice. Autoantigens (neoantigens) are produced for the first time in the human testes and other organs of the male urogenital tract under androgenic stimulus during puberty. Such antigens trigger autoimmune orchitis if the immune response is not tightly regulated within this system. Endogenous ligands for DC-SIGN could play a role in modulating such responses. Human seminal plasma glycoproteins express a high level of terminal Lewis(x) and Lewis(y) carbohydrate antigens. These epitopes react specifically with the lectin domains of DC-SIGN. However, because the expression of these sequences is necessary but not sufficient for interaction with DC-SIGN, this study was undertaken to determine if any seminal plasma glycoproteins are also endogenous ligands for DC-SIGN. Glycoproteins bearing terminal Lewis(x) and Lewis(y) sequences were initially isolated by lectin affinity chromatography. Protein sequencing established that three tumor biomarker glycoproteins (clusterin, galectin-3 binding glycoprotein, prostatic acid phosphatase) and protein C inhibitor were purified by using this affinity method. The binding of DC-SIGN to these seminal plasma glycoproteins was demonstrated in both Western blot and immunoprecipitation studies. These findings have confirmed that human seminal plasma contains endogenous glycoprotein ligands for DC-SIGN that could play a role in maintaining immune homeostasis both in the male urogenital tract and the vagina after coitus.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Glicoproteínas/metabolismo , Lectinas Tipo C/metabolismo , Receptores de Superficie Celular/metabolismo , Semen/metabolismo , Humanos , Ligandos , Masculino , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
2.
Biol Reprod ; 83(4): 623-34, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20592306

RESUMEN

The molecular basis underlying the binding of spermatozoa to their homologous eggs and the subsequent induction of acrosomal exocytosis remain a major unresolved issue in mammalian fertilization. Novel cell adhesion systems are now being explored to advance this research. Triantennary and tetraantennary N-glycans have previously been implicated as the major carbohydrate sequences that mediate the initial binding of spermatozoa to the specialized egg coat (zona pellucida) in the murine and porcine models. Mouse spermatozoa also undergo binding to rabbit erythrocytes (rRBCs), presumably via the interaction of their lectin-like egg-binding proteins with branched polylactosamine sequences present on these somatic cells. Experiments presented in this study confirm that boar spermatozoa also bind to rRBCs. However, unlike mouse spermatozoa, boar spermatozoa also undergo acrosomal exocytosis within 30 min after binding to rRBCs. Both binding and induction of acrosomal exocytosis in this system did not require the participation of terminal Galalpha1-3Gal sequences that are found on rRBCs. Pronase glycopeptides derived from rRBCs inhibited the binding of boar sperm to porcine oocytes by 91% at a final concentration of 0.3 mg/ml under standard IVF conditions. Binding in this porcine cell adhesion model was also completely blocked at this concentration of glycopeptide. Thus, adhesion results from the interaction of the egg-binding protein expressed on the surface of boar spermatozoa with the glycans presented on rRBCs. This cell adhesion model will be useful for investigating the molecular basis of gamete binding and the induction of acrosomal exocytosis in the pig.


Asunto(s)
Acrosoma/fisiología , Metabolismo de los Hidratos de Carbono , Adhesión Celular/fisiología , Exocitosis/fisiología , Oocitos/fisiología , Espermatozoides/fisiología , Porcinos/fisiología , Acrosoma/metabolismo , Acrosoma/ultraestructura , Animales , Eritrocitos/metabolismo , Eritrocitos/ultraestructura , Citometría de Flujo/veterinaria , Pruebas de Hemaglutinación/veterinaria , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión/veterinaria , Oocitos/citología , Oocitos/metabolismo , Oocitos/ultraestructura , Espermatozoides/citología , Espermatozoides/metabolismo , Espermatozoides/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...