Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Physiol Res ; 70(3): 481-487, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-33982582

RESUMEN

Mus musculus is the most commonly used animal model in microRNA research; however, little is known about the endogenous miRNome of the animals used in the miRNA-targeting preclinical studies with the human xenografts. In the presented study, we evaluated the NOD/SCID gamma mouse model for the preclinical study of systemic miR-215-5p substitution with a semitelechelic poly[N-(2-hydroxypropyl)-methacrylamide]-based carrier conjugated with miR-215-5p-mimic via a reductively degradable disulfide bond. Murine mmu-miR-215-5p and human hsa-miR-215-5p have a high homology of mature sequences with only one nucleotide substitution. Due to the high homology of hsa-miR-215-5p and mmu-hsa-miR-215-5p, a similar expression in human and NOD/SCID gamma mice was expected. Expression of mmu-miR-215 in murine organs did not indicate tissue-specific expression and was highly expressed in all examined tissues. All animals included in the study showed a significantly higher concentration of miR-215-5p in the blood plasma compared to human blood plasma, where miR-215-5p is on the verge of a reliable detection limit. However, circulating mmu-miR-215-5p did not enter the human xenograft tumors generated with colorectal cancer cell lines since the levels of miR-215-5p in control tumors remained notably lower compared to those originally transfected with miR-215-5p. Finally, the systemic administration of polymer-miR-215-5p-mimic conjugate to the tail vein did not increase miR-215-5p in NOD/SCID gamma mouse blood plasma, organs, and subcutaneous tumors. It was impossible to distinguish hsa-miR-215-5p and mmu-miR-215-5p in the murine blood and organs due to the high expression of endogenous mmu-miR-215-5p. In conclusion, the examination of endogenous tissue and circulating miRNome of an experimental animal model of choice might be necessary for future miRNA studies focused on the systemic delivery of miRNA-based drugs conducted in the animal models.


Asunto(s)
Técnicas de Transferencia de Gen , MicroARNs/administración & dosificación , MicroARNs/uso terapéutico , Animales , Modelos Animales de Enfermedad , Portadores de Fármacos , Perfilación de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , MicroARNs/genética , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Physiol Res ; 65(Suppl 2): S203-S216, 2016 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-27762586

RESUMEN

Vaccines have helped considerably in eliminating some life-threatening infectious diseases in past two hundred years. Recently, human medicine has focused on vaccination against some of the world's most common infectious diseases (AIDS, malaria, tuberculosis, etc.), and vaccination is also gaining popularity in the treatment of cancer or autoimmune diseases. The major limitation of current vaccines lies in their poor ability to generate a sufficient level of protective antibodies and T cell responses against diseases such as HIV, malaria, tuberculosis and cancers. Among the promising vaccination systems that could improve the potency of weakly immunogenic vaccines belong macromolecular carriers (water soluble polymers, polymer particels, micelles, gels etc.) conjugated with antigens and immunistumulatory molecules. The size, architecture, and the composition of the high molecular-weight carrier can significantly improve the vaccine efficiency. This review includes the most recently developed (bio)polymer-based vaccines reported in the literature.


Asunto(s)
Portadores de Fármacos , Vacunación , Vacunas , Adyuvantes Inmunológicos , Animales , Humanos , Polímeros
3.
J Mater Chem B ; 4(47): 7620-7629, 2016 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-32263818

RESUMEN

We describe design, synthesis, physico-chemical characterization and preliminary biological evaluation of micelle-forming polymer drug conjugates with controlled drug release intended for tumor treatment. The structure of the conjugates was designed to enable tumor tissue- and cell-specific drug release and micelle disassembly to avoid side effects accompanying classic chemotherapy and guarantee safe elimination of the drug-free carrier from the organisms. The amphiphilic polymer conjugates consisted of a hydrophobic hexaleucine block and a hydrophilic block based on the N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer with an antiviral and cytostatic drug, ritonavir, bound through a pH-sensitive spacer. Diblock copolymers with low dispersity (D∼ 1.1) were prepared via reversible addition-fragmentation chain transfer (RAFT) copolymerization using a hexaleucine derivative as a chain transfer agent. The associative properties of the copolymers depend on the hydrophilic polymer block length and the hydrophobic ritonavir content. The micelles dissociated under mild acidic conditions mimicking the environment inside tumor tissue/cells, because of the decrease in polymer hydrophobicity after the rapid release of the hydrophobic drug from the polymer carrier. Unexpectedly, the polymer-ritonavir conjugates internalized into HeLa cells significantly more than the polymers without ritonavir. The enhanced cell penetration and pH-triggered micelle disassembly predetermine the polymer-ritonavir conjugates to become promising tumor-targeted drug carriers.

4.
Physiol Res ; 64(Suppl 1): S29-40, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26447593

RESUMEN

Efficient intravenous delivery is the greatest single hurdle, with most nanotherapeutics frequently found to be unstable in the harsh conditions of the bloodstream. In the case of nanotherapeutics for gene delivery, viral vectors are often avidly recognized by both the innate and the adaptive immune systems. So, most modern delivery systems have benefited from being coated with hydrophilic polymers. Self-assembling delivery systems can achieve both steric and lateral stabilization following surface coating, endowing them with much improved systemic circulation properties and better access to disseminated targets; similarly, gene delivery viral vectors can be 'stealthed' and their physical properties modulated by surface coating. Polymers that start degrading under acidic conditions are increasingly investigated as a pathway to trigger the release of drugs or genes once the carrier reaches a slightly acidic tumor environment or after the carrier has been taken up by cells, resulting in the localization of the polymer in acidic endosomes and lysosomes. Advances in the design of acid-degradable drug and gene delivery systems have been focused and discussed in this article with stress placed on HPMA-based copolymers. We designed a system that is able to "throw away" the polymer coat after successful transport of the vector into a target cell. Initial biological studies were performed and it was demonstrated that this principle is applicable for real adenoviral vectors. It was shown that the transfection ability of coated virus at pH 7.4 is 75 times lower then transfection at pH 5.4.


Asunto(s)
Química Farmacéutica , Técnicas de Transferencia de Gen , Nanomedicina/métodos , Adenoviridae/genética , Endosomas , Vectores Genéticos , Humanos , Concentración de Iones de Hidrógeno , Lisosomas , Microesferas , Polímeros , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...