Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
1.
Anal Chim Acta ; 1307: 342574, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719419

RESUMEN

BACKGROUND: Metabolomics is nowadays considered one the most powerful analytical for the discovery of metabolic dysregulations associated with the insurgence of cancer, given the reprogramming of the cell metabolism to meet the bioenergetic and biosynthetic demands of the malignant cell. Notwithstanding, several challenges still exist regarding quality control, method standardization, data processing, and compound identification. Therefore, there is a need for effective and straightforward approaches for the untargeted analysis of structurally related classes of compounds, such as acylcarnitines, that have been widely investigated in prostate cancer research for their role in energy metabolism and transport and ß-oxidation of fatty acids. RESULTS: In the present study, an innovative analytical platform was developed for the straightforward albeit comprehensive characterization of acylcarnitines based on high-resolution mass spectrometry, Kendrick mass defect filtering, and confirmation by prediction of their retention time in reversed-phase chromatography. In particular, a customized data processing workflow was set up on Compound Discoverer software to enable the Kendrick mass defect filtering, which allowed filtering out more than 90 % of the initial features resulting from the processing of 25 tumoral and adjacent non-malignant prostate tissues collected from patients undergoing radical prostatectomy. Later, a partial least square-discriminant analysis model validated by repeated double cross-validation was built on the dataset of 74 annotated acylcarnitines, with classification rates higher than 93 % for both groups, and univariate statistical analysis helped elucidate the individual role of the annotated metabolites. SIGNIFICANCE: Hydroxylation of short- and medium-chain minor acylcarnitines appeared to be a significant variable in describing tissue differences, suggesting the hypothesis that the neoplastic growth is linked to oxidation phenomena on selected metabolites and reinforcing the need for effective methods for the annotation of minor metabolites.


Asunto(s)
Carnitina , Neoplasias de la Próstata , Masculino , Carnitina/análogos & derivados , Carnitina/metabolismo , Carnitina/química , Carnitina/análisis , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Humanos , Flujo de Trabajo , Metabolómica , Espectrometría de Masas
2.
J Pharm Biomed Anal ; 245: 116181, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38723555

RESUMEN

Hemp-sprouts are emerging as a new class of attractive functional food due to their numerous health benefits when compared to other sprout species. Indeed, the high content of beneficial components including polyphenols and flavonoids makes this type of food a promising and successful market. However, the available literature on this topic is limited and often conflicting as regards to the content of phytocannabinoids. High-performance liquid chromatography coupled to high-resolution mass spectrometry (HPLC-HRMS) was applied in an untargeted metabolomics fashion to extracts of hemp seeds, sprouts and microgreens of nine different genotypes. Both unsupervised and supervised multivariate statistical analysis was performed to reveal variety-specific profiles of phytocannabinoids with surprisingly remarkable levels of phytocannabinoids even in chemotype V samples. Furthermore, a targeted HPLC-HRMS analysis was carried out for the quantitative determination of the major phytocannabinoids including CBDA, CBD, CBGA, CBG, CBCA, CBC, THCA, and trans-Δ9-THC. The last part of the study was focused on the evaluation of the enantiomeric composition of CBCA in hemp seeds, sprouts and microgreens in the different varieties by HPLC-CD (HPLC with online circular dichroism). Chiral analysis of CBCA showed a wide variability of its enantiomeric composition in the different varieties, thus contributing to the understanding of the intriguing stereochemical behavior of this compound in an early growth stage. However, further investigation is needed to determine the genetic factors responsible for the low enantiopurity of this compound.


Asunto(s)
Cannabis , Semillas , Cannabis/química , Cannabis/crecimiento & desarrollo , Semillas/química , Cromatografía Líquida de Alta Presión/métodos , Cannabinoides/análisis , Cannabinoides/química , Extractos Vegetales/química , Extractos Vegetales/análisis , Espectrometría de Masas/métodos , Metabolómica/métodos , Estereoisomerismo , Dicroismo Circular/métodos
3.
Anal Chem ; 96(11): 4639-4646, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38501258

RESUMEN

Multicomponent reactions offer efficient and environmentally friendly strategies for preparing monoliths suitable for applications in analytical chemistry. In the described study, a multicomponent reaction was utilized for the one-pot miniaturized preparation of a poly(propargyl amine) polymer inside commercial silica-lined PEEK tubing. The reaction involved only small amounts of reagents and was characterized by atom economy. The resulting monolithic column was incorporated into an autosampler system for the online extraction and cleanup of ß-estradiol from human serum. Sample pretreatment was simplified to a simple dilution with methanol and centrifugation to remove proteins. The resulting platform included LC-MS analysis in multiple reaction monitoring for quantitative analysis of ß-estradiol. The method was validated in serum, demonstrating practical applicability for the monitoring of fertile women. Recoveries were above 94%, and LOD and LOQ values at 0.008 and 0.18 ng mL-1, respectively. The developed platform proved to be competitive with previous methods for solid-phase microextraction of ß-estradiol in serum, with comparable recovery and sensitivity but with the advantage of nearly complete automation. The environmental impact of the process was evaluated as acceptable due to the miniaturization of the monolith synthesis and the automation of extraction. The drawback associated with the LC-MS technique can be reduced by the inclusion of additional analytes in a single investigation. The work demonstrates that multicomponent reactions are versatile, economical, and possibly a green methodology for producing reversed-phase and mixed-mode sorbents, enabling miniaturization of the entire analytical procedure from the preparation of extraction sorbents to analysis.


Asunto(s)
Cromatografía Líquida con Espectrometría de Masas , Espectrometría de Masas en Tándem , Humanos , Femenino , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Estradiol , Microextracción en Fase Sólida/métodos , Extracción en Fase Sólida/métodos
4.
Nutrients ; 16(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38337656

RESUMEN

The production of olive oil has important economic repercussions in Mediterranean countries but also a considerable impact on the environment. This production generates enormous quantities of waste and by-products, which can be exploited as new raw materials to obtain innovative ingredients and therefore make the olive production more sustainable. In a previous study, we decided to foster olive seeds by generating two protein hydrolysates using food-grade enzymes, alcalase (AH) and papain (PH). These hydrolysates have shown, both in vitro and at the cellular level, antioxidant and antidiabetic activities, being able to inhibit the activity of the DPP-IV enzyme and modulate the secretion of GLP-1. Given the multifunctional behavior of peptides, both hydrolysates displayed dual hypocholesterolemic activity, inhibiting the activity of HMGCoAR and impairing the PPI of PCSK9/LDLR, with an IC50 equal to 0.61 mg/mL and 0.31 mg/mL for AH and PH, respectively. Furthermore, both samples restored LDLR protein levels on the membrane of human hepatic HepG2 cells, increasing the uptake of LDL from the extracellular environment. Since intestinal bioavailability is a key component of bioactive peptides, the second objective of this work is to evaluate the capacity of AH and PH peptides to be transported by differentiated human intestinal Caco-2 cells. The peptides transported by intestinal cells have been analyzed using mass spectrometry analysis, identifying a mixture of stable peptides that may represent new ingredients with multifunctional qualities for the development of nutraceuticals and functional foods to delay the onset of metabolic syndrome, promoting the principles of environmental sustainability.


Asunto(s)
Olea , Proproteína Convertasa 9 , Humanos , Células Hep G2 , Proproteína Convertasa 9/metabolismo , Células CACO-2 , Olea/química , Péptidos/química , Colesterol/metabolismo , Semillas/química
5.
Talanta ; 271: 125686, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38244310

RESUMEN

Due to their valuable nutritional content, several hemp-derived products from hempseeds have recently been placed in the market as food and food ingredients. In particular, the lipid composition of hempseeds has raised interest for their rich content in biologically active polyunsaturated fatty acids with an optimum ratio of omega-3 and omega-6 compounds. At present, however, the overall polar lipidome composition of hempseeds remains largely unknown. In the present work, an analytical platform was developed for the extraction, untargeted HRMS-based analysis, and detailed annotation of the lipid species. First, five one- and two-phase solid-liquid extraction protocols were tested and compared on a hempseed pool sample to select the method that allowed the overall highest efficiency as well as easy coupling with lipid derivatization by photochemical [2 + 2] cycloaddition with 6-azauracil. Underivatized lipids were annotated employing a data processing workflow on Compound Discoverer software that was specifically designed for polar lipidomics, whereas inspection of the MS/MS spectra of the derivatized lipids following the aza-Paternò-Büchi reaction allowed pinpointing the regiochemistry of carbon-carbon double bonds. A total of 184 lipids were annotated, i.e., 26 fatty acids and 158 phospholipids, including minor subclasses such as N-acylphosphatidylethanolamines. Once the platform was set up, the lipid extracts from nine hempseed samples from different hemp strains were characterized, with information on the regiochemistry of free and conjugated fatty acids. The overall analytical approach helped to fill a gap in the knowledge of the nutritional composition of hempseeds.


Asunto(s)
Ácidos Grasos Omega-3 , Lipidómica , Espectrometría de Masas en Tándem , Carbono , Ácidos Grasos
6.
Methods Mol Biol ; 2745: 31-43, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38060178

RESUMEN

Short-chain peptides have attracted increasing attention in different research fields, including biomarker discovery, but also a well-known analytical challenge in complex matrices due to their low abundance compared to other molecules, which can cause extensive ion suppression during mass spectrometric acquisition. Moreover, there is a lack of analytical workflows for their comprehensive characterization since ordinary peptidomics strategies cannot identify them. In this context, an enrichment strategy was introduced and developed to isolate and clean up short-chain peptides by graphitized carbon black solid phase extraction. For better coverage of peptide polarity, urine samples were analyzed by ultrahigh performance liquid chromatography by reversed-phase and hydrophilic interaction liquid chromatography. High-resolution mass spectrometry allowed the detection of the eluting peptides by data-dependent mode using a suspect screening strategy with an inclusion list; peptides were identified by a semiautomated workflow implemented on Compound Discoverer. The complementarity of the orthogonal separation strategy was confirmed by peptide identification, resulting in 101 peptides identified from the RP runs, and 111 peptides from the HILIC runs, with 60 common identifications.


Asunto(s)
Péptidos , Extracción en Fase Sólida , Péptidos/análisis , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Cromatografía Líquida de Alta Presión/métodos
7.
Mikrochim Acta ; 190(12): 485, 2023 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-38006439

RESUMEN

A molecularly imprinted polymer with a specific selectivity for patulin was successfully synthesized. The molecularly imprinted material was prepared using the two functional monomers dopamine and melamine and formaldehyde as the cross-linker. The resulting material possessed a large number of hydrophilic groups, such as hydroxyls, imino groups, and ether linkages. For the first time, uric acid was used as a dummy template for its structural similarity to patulin. Comprehensive characterization and detailed studies of the adsorption process were carried out via adsorption isotherms, while the rate-limiting steps were investigated using adsorption kinetics. Separation, determination, and quantification of patulin were achieved by ultra-high performance liquid chromatography coupled with both photodiode array detection and tandem mass spectrometry. The latter was applied to patulin confirmation in the analysis of real samples. The methodology was validated in 20 apple juice samples. The results showed that the developed hydrophilic molecularly imprinted polymer had high selectivity and specific adsorption towards patulin, with mean recoveries ranging between 85 and 90% and a relative standard deviation lower than 15%. The developed molecularly imprinted polymer exhibited good linearity in the range 1-100 ng mL-1 with coefficient of determination (R2) > 0.99. The limit of detection was 0.5 ng mL-1, and the limit of quantification was 1 ng g-1. The developed method showed a good purification capacity for apple juices due to its hydrophilic nature and the polar interactions established with the target analyte.


Asunto(s)
Malus , Impresión Molecular , Patulina , Patulina/análisis , Polímeros Impresos Molecularmente , Malus/química , Polímeros/química , Extracción en Fase Sólida/métodos
8.
Anal Chim Acta ; 1278: 341716, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37709459

RESUMEN

Cannabis sativa has long been harvested for industrial applications related to its fibers. Industrial hemp cultivars, a botanical class of Cannabis sativa with a low expression of intoxicating Δ9-tetrahydrocannabinol (Δ9-THC) have been selected for these purposes and scarcely investigated in terms of their content in bioactive compounds. Following the global relaxation in the market of industrial hemp-derived products, research in industrial hemp for pharmaceutical and nutraceutical purposes has surged. In this context, metabolomics-based approaches have proven to fulfill the aim of obtaining comprehensive information on the phytocompound profile of cannabis samples, going beyond the targeted evaluation of the major phytocannabinoids. In the present paper, an HRMS-based metabolomics study was addressed to seven distinct industrial hemp cultivars grown in four experimental fields in Northern, Southern, and Insular Italy. Since the role of minor phytocannabinoids as well as other phytocompounds was found to be critical in discriminating cannabis chemovars and in determining its biological activities, a comprehensive characterization of phytocannabinoids, flavonoids, and phenolic acids was carried out by LC-HRMS and a dedicated data processing workflow following the guidelines of the metabolomics Quality Assurance and Quality Control Consortium. A total of 54 phytocannabinoids, 134 flavonoids, and 77 phenolic acids were annotated, and their role in distinguishing hemp samples based on the geographical field location and cultivar was evaluated by ANOVA-simultaneous component analysis. Finally, a low-level fused model demonstrated the key role of untargeted cannabinomics extended to lesser-studied phytocompound classes for the discrimination of hemp samples.


Asunto(s)
Cannabis , Industrias , Suplementos Dietéticos , Flavonoides
9.
Sci Rep ; 13(1): 11061, 2023 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-37422571

RESUMEN

Cannabis is a multifaceted plant with numerous therapeutic properties on one hand, and controversial psychotropic activities on the other hand, which are modulated by CB1 endocannabinoid receptors. Δ9-Tetrahydrocannabinol (Δ9-THC) has been identified as the main component responsible for the psychotropic effects, while its constitutional isomer cannabidiol (CBD) has shown completely different pharmacological properties. Due to its reported beneficial effects, Cannabis has gained global popularity and is openly sold in shops and online. To circumvent legal restrictions, semi-synthetic derivatives of CBD are now frequently added to cannabis products, producing "high" effects similar to those induced by Δ9-THC. The first semi-synthetic cannabinoid to appear in the EU was obtained through cyclization and hydrogenation of CBD, and is known as hexahydrocannabinol (HHC). Currently, there is limited knowledge regarding HHC, its pharmacological properties, and its prevalence, as it is not commonly investigated in routine toxicological assays. In this study, synthetic strategies were explored to obtain an excess of the active epimer of HHC. Furthermore, the two epimers were purified and individually tested for their cannabinomimetic activity. Lastly, a simple and rapid chromatographic method employing a UV detector and a high-resolution mass spectrometer was applied to identify and quantify up to ten major phytocannabinoids, as well as the HHC epimers, in commercial cannabis samples.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabis , Alucinógenos , Dronabinol/farmacología , Psicotrópicos/farmacología , Cannabinoides/farmacología , Cannabis/química , Cannabidiol/farmacología , Cannabidiol/química
10.
J Chromatogr A ; 1703: 464094, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37262932

RESUMEN

Mitragyna speciosa or kratom is emerging worldwide as a "legal" herbal drug of abuse. An increasing number of papers is appearing in the scientific literature regarding its pharmacological profile and the analysis of its chemical constituents, mainly represented by alkaloids. However, its detection and identification are not straightforward as the plant material is not particularly distinctive. Hyphenated techniques are generally preferred for the identification and quantification of these compounds, especially the main purported psychoactive substances, mitragynine (MG) and 7-hydroxymitragynine (7-OH-MG), in raw and commercial products. Considering the vast popularity of this recreational drug and the growing concern about its safety, the analysis of alkaloids in biological specimens is also of great importance for forensic and toxicological laboratories. The review addresses the analytical aspects of kratom spanning the extraction techniques used to isolate the alkaloids, the qualitative and quantitative analytical methods and the strategies for the distinction of the naturally occurring isomers.


Asunto(s)
Drogas Ilícitas , Mitragyna , Extractos Vegetales/química , Mitragyna/química
11.
Food Chem ; 426: 136458, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37329795

RESUMEN

Dipeptidyl peptidase IV (DPP-IV) is considered a key target for the diabetes treatment, since it is involved in glucose metabolism. Although lupin protein consumption shown hypoglycemic activity, there is no evidence of its effect on DPP-IV activity. This study demonstrates that a lupin protein hydrolysate (LPH), obtained by hydrolysis with Alcalase, exerts anti-diabetic activity by modulating DPP-IV activity. In fact, LPH decreased DPP-IV activity in a cell-free and cell-based system. Contextually, Caco-2 cells were employed to identify LPH peptides that can be intestinally trans-epithelial transported. Notably, 141 different intestinally transported LPH sequences were identified using nano- and ultra-chromatography coupled to mass spectrometry. Hence, it was demonstrated that LPH modulated the glycemic response and the glucose concentration in mice, by inhibiting the DPP-IV. Finally, a beverage containing 1 g of LPH decreased DPP-IV activity and glucose levels in humans.


Asunto(s)
Diabetes Mellitus , Inhibidores de la Dipeptidil-Peptidasa IV , Lupinus , Humanos , Animales , Ratones , Lupinus/química , Células CACO-2 , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/química , Péptidos/química , Dipeptidil Peptidasa 4/metabolismo , Glucosa
12.
Sci Total Environ ; 894: 165089, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37355117

RESUMEN

Wastewater treatment plants are known to be relevant input sources of per- and polyfluoroalkyl substances (PFAS) in the aquatic environment. This study aimed to investigate the occurrence, fate, and seasonal variability of twenty-five PFAS in four municipal wastewater treatment plants (WWTP A, B, C, and D) surrounding the city of Milan (Northern, Italy). Composite 24-h wastewater samples were collected in July and October 2021 and May and February 2022 from influents and effluents of the four WWTPs. PFAS were detected at concentrations ranging between 24.1 and 66.9 µg L-1 for influent and 13.4 and 107 µg L-1 for effluent wastewater samples. Perfluoropentanoic acid was the most abundant (1.91-30.0 µg L-1) in influent samples, whereas perfluorobutane sulfonic acid predominated (0.80-66.1 µg L-1) in effluent samples. In sludge, PFOA was detected in plant A at concentrations in the range of 96.6-165 ng kg-1 dw in primary sludge samples and 98.6-440 ng kg-1 dw in secondary treatment sludge samples. The removal efficiency of total PFAS varied between 6 % and 96 %. However, an increase of PFAS concentrations was observed from influents to effluents for plant D (during July and October), plant A (during October and May), and plant C (during May) indicating that biotransformation of PFAS precursors can occur during biological treatments. This was supported by the observed increase in concentrations of PFOA from primary to secondary treatment sludge samples in plant A. Moreover, the plant operating at shorter hydraulic retention times (plant D) showed lower removal efficiency (<45 %). Seasonal variation of PFAS in influent and effluent appears rather low and more likely due to pulse release instead of seasonal factors.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Purificación del Agua , Aguas Residuales , Aguas del Alcantarillado , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Fluorocarburos/análisis
13.
Artículo en Inglés | MEDLINE | ID: mdl-36965450

RESUMEN

The evaluation of the chiral composition of phytocannabinoids in the cannabis plant is particularly important as the pharmacological effects of the (+) and (-) enantiomers of these compounds are completely different. Chromatographic attempts to assess the presence of the minor (+) enantiomers of the main phytocannabinoids, cannabidiolic acid (CBDA) and trans-Δ9-tetrahydrocannabinolic acid (trans-Δ9-THCA), were carried out on heated plant extracts for the determination of the corresponding decarboxylated species, cannabidiol (CBD) and trans-Δ9-tetrahydrocannabinol (trans-Δ9-THC), respectively. This process produces an altered phytocannabinoid composition with several new and unknown decomposition products. The present work reports for the first time the stereoselective synthesis of the pure (+) enantiomers of the main phytocannabinoids, trans-CBDA, trans-Δ9-THCA, trans-CBD and trans-Δ9-THC, and the development and optimization of an achiral-chiral liquid chromatography method coupled to UV and high-resolution mass spectrometry detection in reversed phase conditions (RP-HPLC-UV-HRMS) for the isolation of the single compounds and evaluation of their actual enantiomeric composition in plant. The isolation of the peaks with the achiral stationary phase ensured the absence of interferences that could potentially co-elute with the analytes of interest in the chiral analysis. The method applied to the Italian medicinal cannabis variety FM2 revealed no trace of the (+) enantiomers for all phytocannabinoids under investigation before and after decarboxylation, thus suggesting that the extraction procedure does not lead to an inversion of configuration.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabis , Marihuana Medicinal , Dronabinol/análisis , Cannabinoides/análisis , Cannabis/química , Cannabidiol/análisis
14.
J Pharm Biomed Anal ; 227: 115292, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36804291

RESUMEN

The presence of pharmaceuticals in the aquatic environment is mainly due to their release from the effluents of the wastewater treatment plants (WWTPs), which are unable to completely remove them and their transformation products (TPs). Sulfonamides (SAs) are a synthetic antibacterial class used for the treatment of both human and animal infections; they have often been reported in surface water, thus contributing to the antibiotic resistance emergency. Monitoring SA TPs should be important as well because they could still exert some pharmaceutical activity; however, many TPs are still unknown since several transformation processes are possible (e. g. human and animal metabolism, WWTP activities, environmental factors etc.). In this work, three of the most used SAs, i.e., sulfamethoxazole (SMX), sulfapyridine (SPY), and sulfadiazine (SDZ), were incubated for 20 days in a batch reactor with activated sludge under controlled conditions. Then, the water sample was extracted and analyzed by ultra-high performance liquid chromatography-high resolution mass spectrometry in the data dependent acquisition (DDA) mode. Starting from the literature data, the possible transformation pathways were studied, and for each SA, a list of TPs was hypothesized and used for the identification. The raw data files were processed with Compound Discoverer, and 44 TPs (18, 13, and 13 TPs for SMX, SPY, and SDZ, respectively), including multiple TPs, were manually validated. To overcome the limitation of the DDA, the identified TPs were used in an inclusion list to analyze WWTP samples by a suspect screening approach. In this way, 4 SMX TPs and 5 SPY TPs were tentatively identified together with their parent compounds. Among these TPs, 5 of 9 were acetylated forms, in agreement with previous literature reporting that acetylation is the predominant SA transformation.


Asunto(s)
Sulfonamidas , Contaminantes Químicos del Agua , Humanos , Sulfonamidas/química , Agua , Contaminantes Químicos del Agua/análisis , Antibacterianos/análisis , Sulfanilamida , Espectrometría de Masas , Sulfametoxazol , Sulfapiridina , Sulfadiazina
15.
J Chromatogr A ; 1692: 463838, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36745961

RESUMEN

Industrial hemp (Cannabis sativa L.) is a plant matrix whose use is recently spreading for pharmaceutical and nutraceutical purposes. Detailed characterization of hemp composition is needed for future research that further exploits the beneficial effects of hemp compounds on human health. Among minor constituents, carotenoids and fat-soluble vitamins have largely been neglected to date despite carrying out several biological activities and regulatory functions. In the present paper, 22 target carotenoids and fat-soluble vitamins were analyzed in the inflorescences of seven Italian industrial hemp varieties cultivated outdoor. The analytes were extracted by cold saponification to avoid artifacts and analyzed by high-performance liquid chromatography coupled with Selected reaction monitoring mass spectrometry. Phytoene, phytofluene, and all-trans-ß-carotene were the most abundant in all analyzed samples (31-55 µg g-1, 11.6-29 µg g-1, and 7.3-53 µg g-1, respectively). Besides the target analytes, liquid chromatography coupled with photodiode-array detection allowed us to tentatively identify several other carotenoids based on their retention behavior and UV-vis spectra with the support of theoretical rules and data in the literature. To the best of our knowledge, this is the first comprehensive characterization of carotenoids and fat-soluble vitamins in industrial hemp inflorescence.


Asunto(s)
Cannabis , Humanos , Cannabis/química , Inflorescencia/química , Cromatografía Liquida , Vitaminas/análisis , Espectrometría de Masas , Cromatografía Líquida de Alta Presión/métodos , Carotenoides/análisis
16.
Anal Bioanal Chem ; 415(18): 3727-3738, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36811677

RESUMEN

This trends article provides an overview of the state of the art in the analysis of intact glycopeptides by proteomics technologies based on LC-MS analysis. A brief description of the main techniques used at the different steps of the analytical workflow is provided, giving special attention to the most recent developments. The topics discussed include the need for dedicated sample preparation for intact glycopeptide purification from complex biological matrices. This section covers the common approaches with a special description of new materials and innovative reversible chemical derivatization strategies, specifically devised for intact glycopeptide analysis or dual enrichment of glycosylation and other post-translational modifications. The approaches are described for the characterization of intact glycopeptide structures by LC-MS and data analysis by bioinformatics for spectra annotation. The last section covers the open challenges in the field of intact glycopeptide analysis. These challenges include the need of a detailed description of the glycopeptide isomerism, the issues with quantitative analysis, and the lack of analytical methods for the large-scale characterization of glycosylation types that remain poorly characterized, such as C-mannosylation and tyrosine O-glycosylation. This bird's-eye view article provides both a state of the art in the field of intact glycopeptide analysis and open challenges to prompt future research on the topic.


Asunto(s)
Glicopéptidos , Procesamiento Proteico-Postraduccional , Cromatografía Liquida/métodos , Glicopéptidos/análisis , Glicosilación , Espectrometría de Masas
17.
Food Res Int ; 163: 112219, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36596148

RESUMEN

This study aims to obtain a valuable mixture of short-chain peptides from hempseed as a new ingredient for developing nutraceutical and functional foods useful for preventing metabolic syndrome that represents the major cause of death globally. A dedicated analytical platform based on a purification step by size exclusion chromatography or ultrafiltration membrane and high-resolution mass spectrometry was developed to isolate and comprehensively characterize short-chain peptides leading to the identification of more than 500 short-chain peptides. Our results indicated that the short-chain peptide mixture was about three times more active than the medium-chain peptide mixture and total hydrolysate with respect to measured inhibition of the angiotensin-converting enzyme. The short-chain peptide mixture was also two times more active as a dipeptidyl peptidase IV, and twofold more active on the cholesterol metabolism pathway through the modulation of low-density lipoprotein receptor.


Asunto(s)
Cannabis , Síndrome Metabólico , Cannabis/química , Síndrome Metabólico/prevención & control , Péptidos/química , Espectrometría de Masas , Semillas
18.
Sci Total Environ ; 858(Pt 1): 159709, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36309265

RESUMEN

In recent years, there is increasing attention on the contaminants of emerging concern (CECs), which include plasticizers, flame retardants, industrial chemicals, pharmaceuticals, and personal care products, since they have been detected even far away from pollution sources. The polar regions are not exempt from the presence of anthropogenic contaminants, and they are employed as a model for understanding the pollutant fate and impact. During the 2021 spring campaign, sixteen surface snow samples were collected close to the research station of Ny-Ålesund located on the Spitsbergen Island of the Norwegian Svalbard Archipelago. The samples were extracted by solid-phase extraction and analyzed by liquid chromatography-high-resolution tandem mass spectrometry (LC-HRMS/MS) following an untargeted approach. Compound tentative identification was obtained with the aid of the software Compound Discoverer, using both mass spectral database search and manual validation. Among the 114 compounds identified with a high confidence level in the snow samples, >80 have some commercial or industrial use (drugs, plasticizers, fragrances, etc.), therefore they could be of anthropogenic origin. Nonetheless, a clear contamination trend did not appear in the snow samples collected on eight different days during one month. The comparison with aerosol samples collected in the same area did not help identifying the source, either, since only a few compounds were in common, and they were mainly of natural origin. As such, the analysis of aerosol sample did not support possible long-range transport, also considering that compounds were detected mostly in the coarse fraction.


Asunto(s)
Monitoreo del Ambiente , Nieve , Nieve/química , Svalbard , Monitoreo del Ambiente/métodos , Plastificantes , Cromatografía Liquida , Espectrometría de Masas
19.
Cancers (Basel) ; 14(19)2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-36230585

RESUMEN

The development of new tools for the early detection of pancreatic ductal adenocarcinoma (PDAC) represents an area of intense research. Recently, the concept has emerged that multiplexed detection of different signatures from a single biospecimen (e.g., saliva, blood, etc.) may exhibit better diagnostic capability than single biomarkers. In this work, we develop a multiplexed strategy for detecting PDAC by combining characterization of the nanoparticle (NP)-protein corona, i.e., the protein layer that surrounds NPs upon exposure to biological fluids and circulating levels of plasma proteins belonging to the acute phase protein (APPs) family. As a first step, we developed a nanoparticle-enabled blood (NEB) test that employed 600 nm graphene oxide (GO) nanosheets and human plasma (HP) (5% vol/vol) to produce 75 personalized protein coronas (25 from healthy subjects and 50 from PDAC patients). Isolation and characterization of protein corona patterns by 1-dimensional (1D) SDS-PAGE identified significant differences in the abundance of low-molecular-weight corona proteins (20-30 kDa) between healthy subjects and PDAC patients. Coupling the outcomes of the NEB test with the circulating levels of alpha 2 globulins, we detected PDAC with a global capacity of 83.3%. Notably, a version of the multiplexed detection strategy run on sex-disaggregated data provided substantially better classification accuracy for men (93.1% vs. 77.8%). Nanoliquid chromatography tandem mass spectrometry (nano-LC MS/MS) experiments allowed to correlate PDAC with an altered enrichment of Apolipoprotein A-I, Apolipoprotein D, Complement factor D, Alpha-1-antichymotrypsin and Alpha-1-antitrypsin in the personalized protein corona. Moreover, other significant changes in the protein corona of PDAC patients were found. Overall, the developed multiplexed strategy is a valid tool for PDAC detection and paves the way for the identification of new potential PDAC biomarkers.

20.
Antioxidants (Basel) ; 11(9)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36139804

RESUMEN

Agri-food industry wastes and by-products include highly valuable components that can upgraded, providing low-cost bioactives or used as an alternative protein source. In this context, by-products from olive production and olive oil extraction process, i.e., seeds, can be fostered. In particular, this work was aimed at extracting and characterizing proteins for Olea europaea L. seeds and at producing two protein hydrolysates using alcalase and papain, respectively. Peptidomic analysis were performed, allowing to determine both medium- and short-sized peptides and to identify their potential biological activities. Moreover, an extensive characterization of the antioxidant properties of Olea europaea L. seed hydrolysates was carried out both in vitro by 2,2-diphenyl-1-picrylhydrazyl (DPPH), by ferric reducing antioxidant power (FRAP), and by 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) assays, respectively, and at cellular level by measuring the ability of these hydrolysates to significant reduce the H2O2-induced reactive oxygen species (ROS) and lipid peroxidation levels in human intestinal Caco-2 cells. The results of the both hydrolysates showed significant antioxidant properties by reducing the free radical scavenging activities up to 65.0 ± 0.1% for the sample hydrolyzed with alcalase and up to 75.7 ± 0.4% for the papain hydrolysates tested at 5 mg/mL, respectively. Moreover, similar values were obtained by the ABTS assays, whereas the FRAP increased up to 13,025.0 ± 241.5% for the alcalase hydrolysates and up to 12,462.5 ± 311.9% for the papain hydrolysates, both tested at 1 mg/mL. According to the in vitro results, both papain and alcalase hydrolysates restore the cellular ROS levels up 130.4 ± 4.24% and 128.5 ± 3.60%, respectively, at 0.1 mg/mL and reduce the lipid peroxidation levels up to 109.2 ± 7.95% and 73.0 ± 7.64%, respectively, at 1.0 mg/mL. In addition, results underlined that the same hydrolysates reduced the activity of dipeptidyl peptidase-IV (DPP-IV) in vitro and at cellular levels up to 42.9 ± 6.5% and 38.7 ± 7.2% at 5.0 mg/mL for alcalase and papain hydrolysates, respectively. Interestingly, they stimulate the release and stability of glucagon-like peptide 1 (GLP-1) hormone through an increase of its levels up to 660.7 ± 21.9 pM and 613.4 ± 39.1 pM for alcalase and papain hydrolysates, respectively. Based on these results, olive seed hydrolysates may represent new ingredients with antioxidant and anti-diabetic properties for the development of nutraceuticals and functional foods for the prevention of metabolic syndrome onset.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...