Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Thromb Haemost ; 17(6): 951-963, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30929299

RESUMEN

Essentials Factor Xa (FXa)-targeting direct oral anticoagulants (DOACs) reduce venous thromboembolism (VTE) The effects of FXa-targeting DOACs on cancer progression remain to be studied In xenograft models, a FXa-targeting DOAC did not inhibit breast cancer growth and metastasis A thrombin-targeting DOAC, dabigatran, also did not inhibit breast cancer growth and metastasis ABSTRACT: Background Factor Xa-targeting DOACs were recently found to reduce recurrent VTE efficiently in cancer patients when compared to the standard treatment with low-molecular-weight heparins (LMWHs). While the anticancer effects of LMWHs have been extensively studied in preclinical cancer models, the effects of FXa-targeting DOACs on cancer progression remain to be studied. Objective We investigated whether the FXa-targeting DOAC rivaroxaban and the thrombin-targeting DOAC dabigatran etexilate (DE) affected human breast cancer growth and metastasis in orthotopic xenograft models. Methods/results Mice that were put on a custom-made chow diet supplemented with rivaroxaban (0.4 or 1.0 mg/g diet) or dabigatran etexilate (DE) (10 mg/g diet) showed prolonged ex vivo coagulation times (prothrombin time [PT] and activated partial thromboplastin time [aPTT] assay, respectively). However, rivaroxaban and DE did not inhibit MDA-MB-231 tumor growth and metastasis formation in lungs or livers of 7-week-old fully immunodeficient NOD/SCID/Æ´C-/- (NSG) mice. Comparable data were obtained for rivaroxaban-treated mice when using NOD-SCID mice. Rivaroxaban and DE treatment also did not significantly inhibit tumor growth and metastasis formation when using another human triple negative breast cancer (TNBC) cell line (HCC1806) in NOD-SCID mice. The FXa and thrombin-induced gene expression of the downstream target CXCL8 in both cell lines, but FXa and thrombin, did not significantly stimulate migration, proliferation, or stemness in vitro. Conclusion Although effectively inhibiting coagulation, the DOACs rivaroxaban and DE did not inhibit orthotopic growth and metastasis of human TNBC. It remains to be investigated whether DOACs exert antitumorigenic effects in other types of cancer.


Asunto(s)
Anticoagulantes/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Dabigatrán/farmacología , Rivaroxabán/farmacología , Animales , Antitrombinas/farmacología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Progresión de la Enfermedad , Inhibidores del Factor Xa/farmacología , Femenino , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Metástasis de la Neoplasia/tratamiento farmacológico , Metástasis de la Neoplasia/patología , Metástasis de la Neoplasia/prevención & control , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Tromboembolia Venosa/prevención & control , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Front Physiol ; 8: 155, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28382003

RESUMEN

Aim: Survivors of neonatal chronic lung disease or bronchopulmonary dysplasia (BPD) suffer from compromised lung function and are at high risk for developing lung injury by multiple insults later in life. Because neonatal lysophosphatidic acid receptor-1 (LPAR1)-deficient rats are protected against hyperoxia-induced lung injury, we hypothesize that LPAR1-deficiency may protect adult survivors of BPD from a second hit response against lipopolysaccharides (LPS)-induced lung injury. Methods: Directly after birth, Wistar control and LPAR1-deficient rat pups were exposed to hyperoxia (90%) for 8 days followed by recovery in room air. After 7 weeks, male rats received either LPS (2 mg kg-1) or 0.9% NaCl by intraperitoneal injection. Alveolar development and lung inflammation were investigated by morphometric analysis, IL-6 production, and mRNA expression of cytokines, chemokines, coagulation factors, and an indicator of oxidative stress. Results: LPAR1-deficient and control rats developed hyperoxia-induced neonatal emphysema, which persisted into adulthood, as demonstrated by alveolar enlargement and decreased vessel density. LPAR1-deficiency protected against LPS-induced lung injury. Adult controls with BPD exhibited an exacerbated response toward LPS with an increased expression of pro-inflammatory mRNAs, whereas LPAR1-deficient rats with BPD were less sensitive to this "second hit" with a decreased pulmonary influx of macrophages and neutrophils, interleukin-6 (IL-6) production, and mRNA expression of IL-6, monocyte chemoattractant protein-1, cytokine-induced neutrophil chemoattractant 1, plasminogen activator inhibitor-1, and tissue factor. Conclusion: LPAR1-deficient rats have increased hyperoxia-induced BPD survival rates and, despite the presence of neonatal emphysema, are less sensitive to an aggravated "second hit" than Wistar controls with BPD. Intervening in LPA-LPAR1-dependent signaling may not only have therapeutic potential for neonatal chronic lung disease, but may also protect adult survivors of BPD from sequelae later in life.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...