Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38842262

RESUMEN

The integration of nanotechnology with photoredox medicine has led to the emergence of biocompatible semiconducting polymer nanoparticles (SPNs) for the optical modulation of intracellular reactive oxygen species (ROS). However, the need for efficient photoactive materials capable of finely controlling the intracellular redox status with high spatial resolution at a nontoxic light density is still largely unmet. Herein, highly photoelectrochemically efficient photoactive polymer beads are developed. The photoactive material/electrolyte interfacial area is maximized by designing porous semiconducting polymer nanoparticles (PSPNs). PSPNs are synthesized by selective hydrolysis of the polyester segments of nanoparticles made of poly(3-hexylthiophene)-graft-poly(lactic acid) (P3HT-g-PLA). The photocurrent of PSPNs is 4.5-fold higher than that of nonporous P3HT-g-PLA-SPNs, and PSPNs efficiently reduce oxygen in an aqueous environment. PSPNs are internalized within endothelial cells and optically trigger ROS generation with a >1.3-fold concentration increase with regard to nonporous P3HT-SPNs, at a light density as low as a few milliwatts per square centimeter, fully compatible with in vivo, chronic applications.

2.
Nanoscale ; 15(46): 18716-18726, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37953671

RESUMEN

Angiogenesis is a fundamental process in biology, given the pivotal role played by blood vessels in providing oxygen and nutrients to tissues, thus ensuring cell survival. Moreover, it is critical in many life-threatening pathologies, like cancer and cardiovascular diseases. In this context, conventional treatments of pathological angiogenesis suffer from several limitations, including low bioavailability, limited spatial and temporal resolution, lack of specificity and possible side effects. Recently, innovative strategies have been explored to overcome these drawbacks based on the use of exogenous nano-sized materials and the treatment of the endothelial tissue with optical or electrical stimuli. Here, conjugated polymer-based nanoparticles are proposed as exogenous photo-actuators, thus combining the advantages offered by nanotechnology with those typical of optical stimulation. Light excitation can achieve high spatial and temporal resolution, while permitting minimal invasiveness. Interestingly, the possibility to either enhance (≈+30%) or reduce (up to -65%) the angiogenic capability of model endothelial cells is demonstrated, by employing different polymer beads, depending on the material type and the presence/absence of the light stimulus. In vitro results reported here represent a valuable proof of principle of the reliability and efficacy of the proposed approach and should be considered as a promising step towards a paradigm shift in therapeutic angiogenesis.


Asunto(s)
Nanopartículas , Polímeros , Humanos , Polímeros/farmacología , Células Endoteliales , Reproducibilidad de los Resultados , Neovascularización Patológica
3.
PLoS One ; 17(8): e0272486, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35917303

RESUMEN

The study of the intimate connection occurring at the interface between cells and titanium implant surfaces is a major challenge for dental materials scientists. Indeed, several imaging techniques have been developed and optimized in the last decades, but an optimal method has not been described yet. The combination of the scanning electron microscopy (SEM) with a focused ion beam (FIB), represents a pioneering and interesting tool to allow the investigation of the relationship occurring at the interface between cells and biomaterials, including titanium. However, major caveats concerning the nature of the biological structures, which are not conductive materials, and the physico-chemical properties of titanium (i.e. color, surface topography), require a fine and accurate preparation of the sample before its imaging. Hence, the aim of the present work is to provide a suitable protocol for cell-titanium sample preparation before imaging by SEM-FIB. The concepts presented in this paper are also transferrable to other fields of biomaterials research.


Asunto(s)
Materiales Biocompatibles , Titanio , Materiales Biocompatibles/química , Adhesión Celular , Microscopía Electrónica de Rastreo , Prótesis e Implantes , Propiedades de Superficie , Titanio/química
4.
Nat Commun ; 13(1): 6, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013167

RESUMEN

Myocardial infarction causes 7.3 million deaths worldwide, mostly for fibrillation that electrically originates from the damaged areas of the left ventricle. Conventional cardiac bypass graft and percutaneous coronary interventions allow reperfusion of the downstream tissue but do not counteract the bioelectrical alteration originated from the infarct area. Genetic, cellular, and tissue engineering therapies are promising avenues but require days/months for permitting proper functional tissue regeneration. Here we engineered biocompatible silicon carbide semiconductive nanowires that synthetically couple, via membrane nanobridge formations, isolated beating cardiomyocytes over distance, restoring physiological cell-cell conductance, thereby permitting the synchronization of bioelectrical activity in otherwise uncoupled cells. Local in-situ multiple injections of nanowires in the left ventricular infarcted regions allow rapid reinstatement of impulse propagation across damaged areas and recover electrogram parameters and conduction velocity. Here we propose this nanomedical intervention as a strategy for reducing ventricular arrhythmia after acute myocardial infarction.


Asunto(s)
Infarto del Miocardio , Miocitos Cardíacos/fisiología , Nanocables , Arritmias Cardíacas/terapia , Compuestos Inorgánicos de Carbono , Ventrículos Cardíacos , Humanos , Infarto del Miocardio/fisiopatología , Infarto del Miocardio/terapia , Compuestos de Silicona
5.
Dalton Trans ; 50(26): 9208-9214, 2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34125122

RESUMEN

Colloidal semiconductor nanoplatelets (NPLs) are a subgroup of quantum confined materials that have recently emerged as promising active materials for solution processed light-emitting diodes (LEDs) thanks to their peculiar structural and electronic properties as well as their reduced dimensionality. Nowadays, the conventional structure for NPL-based LEDs makes use of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) as a hole transporting layer (HTL). This is a well-known conjugated conductive polymer because it leads to high LED efficiency, though it has limited stability in air due to its intrinsic acidity and hygroscopicity. Here, we develop a nanocomposite aqueous ink, obtained by blending commercial PEDOT:PSS with water-based, stable and highly concentrated molybdenum disulfide (MoS2) nanosheets, obtained via liquid phase exfoliation (LPE), which is suitable as a HTL for solution processed NPL-based LEDs. We demonstrate that the MoS2 additive effectively works as a performance booster in unpackaged devices, thereby prolonging the lifetime up to 1000 hours under ambient conditions. Moreover, the addition of MoS2 induces a modification of the anode interface properties, including a change in the work function and a significant enhancement of the permittivity of the HTL.

6.
Environ Pollut ; 284: 117163, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33910133

RESUMEN

Air pollution is well recognized as a central player in cardiovascular disease. Exhaust particulate from diesel engines (DEP) is rich in nanoparticles and may contribute to the health effects of particulate matter in the environment. Moreover, diesel soot emitted by modern engines denotes defective surfaces alongside chemically-reactive sites increasing soot cytotoxicity. We recently demonstrated that engineered nanoparticles can cross the air/blood barrier and are capable to reach the heart. We hypothesize that DEP nanoparticles are pro-arrhythmogenic by direct interaction with cardiac cells. We evaluated the internalization kinetics and the effects of DEP, collected from Euro III (DEPe3, in the absence of Diesel Particulate Filter, DPF) and Euro IV (DEPe4, in the presence of DPF) engines, on alveolar and cardiac cell lines and on in situ rat hearts following DEP tracheal instillation. We observed significant differences in DEP size, metal and organic compositions derived from both engines. DEPe4 comprised ultrafine particles (<100 nm) and denoted a more pronounced toxicological outcome compared to DEPe3. In cardiomyocytes, particle internalization is fastened for DEPe4 compared to DEPe3. The in-vivo epicardial recording shows significant alteration of EGs parameters in both groups. However, the DEPe4-instilled group showed, compared to DEPe3, a significant increment of the effective refractory period, cardiac conduction velocity, and likelihood of arrhythmic events, with a significant increment of membrane lipid peroxidation but no increment in inflammation biomarkers. Our data suggest that DEPe4, possibly due to ultrafine nanoparticles, is rapidly internalized by cardiomyocytes resulting in an acute susceptibility to cardiac electrical disorder and arrhythmias that could accrue from cellular toxicity. Since the postulated transfer of nanoparticles from the lung to myocardial cells has not been investigated it remains open whether the effects on the cardiovascular function are the result of lung inflammatory reactions or due to particles that have reached the heart.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Nanopartículas , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/análisis , Animales , Arritmias Cardíacas/inducido químicamente , Nanopartículas/toxicidad , Material Particulado/análisis , Material Particulado/toxicidad , Ratas , Emisiones de Vehículos/análisis , Emisiones de Vehículos/toxicidad
7.
Mater Sci Eng C Mater Biol Appl ; 121: 111772, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33579438

RESUMEN

Nanomaterials play a pivotal role in modern regenerative medicine and tissue engineering, due to their peculiar physical, optical and biological properties once they are used in the nanometric size. Many evidences are showing the importance of biomaterial micro- and nano-topography on cellular adhesion, proliferation and differentiation, and hence, tissue regeneration. It is well known that nanowires (NWs) can mimic many different tissues as a result of their shape and their surface characteristics, and that surface hydrophilicity affects early protein adsorption and cellular adhesion. Therefore a material able to induce bone regeneration might be obtained by combining optimal surface topography and hydrophilicity. Based on these evidence, we designed silicon carbide (SiC) and core/shell silicon carbide/silicon dioxide (SiC/SiOx) nanowires with modified wettability in order to analyze cell behavior, using an in-vitro osteoblastic model. First, we synthetized SiC NWs and SiC/SiOx NWs through a chemical-vapour-deposition (CVD) process, and then we used hydrogen plasma to modify their hydrophilicity. Subsequently we evaluated the four types of NWs in terms of their morphology and contact angle, and we studied their behavior in the presence of MC3T3-E1 murine osteoblasts. Cell metabolic activity, viability, morphology and focal adhesions formation were considered. Morphological data showed different dimensions between SiC and SiC/SiOx NWs. SiC NWs before the hydrogen plasma treatment showed a very low contact angle, that was absent after the treatment. Osteoblastic cells appeared healthy on all of the samples. Interestingly, both hydrophilic SiC NWs and SiC/SiOx NWs generated a favorable distribution of focal adhesions around the cell body confirmed also by scanning electron microscopy images. Moreover, osteoblasts grown on hydrogen plasma treated SiC/SiOx NWs showed an increased metabolic activity testified by a significantly higher cell number. In conclusion, we are here demonstrating that hydrogen plasma treatment of SiC and SiC/SiOx NWs induce a better osteoblastic cellular adhesion by increasing NWs wettability. We are therefore suggesting that hydrogen plasma treatment of SiC/SiOx can offer a suitable method to develop scaffolds for bone tissue engineering applications.


Asunto(s)
Nanocables , Animales , Compuestos Inorgánicos de Carbono , Hidrógeno , Ratones , Osteoblastos , Compuestos de Silicona
8.
Nanomaterials (Basel) ; 9(12)2019 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-31795174

RESUMEN

Surface topography is one of the main factors controlling cell responses on implanted devices and a proper definition of the characteristics that optimize cell behavior may be crucial to improve the clinical performances of these implants. Substrate geometry is known to affect cell shape, as cells try to optimize their adhesion by adapting to the irregularities beneath, and this in turn profoundly affects their activity. In the present study, we cultured murine calvaria MC3T3-E1 cells on surfaces with pillars arranged as hexagons with two different spacings and observed their morphology during adhesion and growth. Cells on these highly ordered substrates attached and proliferated effectively, showing a marked preference for minimizing the inter-pillar distance, by following specific pathways across adjacent pillars and displaying consistent morphological modules. Moreover, cell behavior appeared to follow tightly controlled patterns of extracellular protein secretion, which preceded and matched cells and, on a sub-cellular level, cytoplasmic orientation. Taken together, these results outline the close integration of surface features, extracellular proteins alignment and cell arrangement, and provide clues on how to control and direct cell spatial order and cell morphology by simply acting on inter-pillar spacing.

9.
J Mater Sci Mater Med ; 30(4): 43, 2019 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-30929122

RESUMEN

Robust cell adhesion is known to be necessary to promote cell colonization of biomaterials and differentiation of progenitors. In this paper, we propose the functionalization of Silicon Oxycarbide (SiOxCy) nanowires (NWs) with 3-mercaptopropyltrimethoxysilane (MPTMS), a molecule containing a terminal -SH group. The aim of this functionalization was to develop a surface capable to adsorb proteins and promote cell adhesion, proliferation and a better deposition of extracellular matrix. This functionalization can be used to anchor other structures such as nanoparticles, proteins or aptamers. It was observed that surface functionalization markedly affected the pattern of protein adsorption, as well as the in vitro proliferation of murine osteoblastic cells MC3T3-E1, which was increased on functionalized nanowires (MPTMS-NWs) compared to bare NWs (control) (p < 0.0001) after 48 h. The cells showed a better adhesion on MPTMS-NWs than on bare NWs, as confirmed by immunofluorescence studies on the cytoskeleton, which showed a more homogeneous vinculin distribution. Gene expression analysis showed higher expression levels for alkaline phosphatase and collagen I, putative markers of the osteoblast initial differentiation stage. These results suggest that functionalization of SiOxCy nanowires with MPTMS enhances cell growth and the expression of an osteoblastic phenotype, providing a promising strategy to improve the biocompatibility of SiOxCy nanowires for biomedical applications.


Asunto(s)
Adhesión Celular/efectos de los fármacos , Nanocables/química , Osteoblastos/efectos de los fármacos , Compuestos de Silicona/farmacología , Compuestos de Sulfhidrilo/farmacología , Andamios del Tejido/química , Animales , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Ensayo de Materiales , Ratones , Nanocables/efectos adversos , Compuestos de Organosilicio , Osteoblastos/citología , Osteoblastos/fisiología , Osteogénesis/efectos de los fármacos , Espectroscopía de Fotoelectrones , Silanos/química , Silanos/farmacología , Compuestos de Silicona/química , Compuestos de Sulfhidrilo/química , Propiedades de Superficie , Andamios del Tejido/efectos adversos
10.
Dent Mater J ; 37(2): 278-285, 2018 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-29279543

RESUMEN

The aim of the study was to investigate cell adhesion to micro-structured titanium. Osteoblastic MC3T3 cells were cultured on smooth (P) or sand-blasted/acid-etched (SLA) titanium discs and were observed at scanning electron microscope/focused ion beam (SEM/FIB). Myosin II and actin microfilaments were labelled for epifluorescence microscopy. FIB revealed that cell adhesion initiated centrally and expanded to the cell periphery and that cells attached on the substrate by bridging over the titanium irregularities and adhering mostly on surface peaks. Gaps were visible between concave areas and cytoplasm and areas around ridges represented preferred attachment points for cells. A different myosin distribution was observed between samples and myosin inhibition affected cell responses. Taken together our data indicate that cells attach on micro-rough titanium by bridging over its irregularities. This is likely mediated by myosin II, whose distribution is altered in cells on SLA discs.


Asunto(s)
Adhesión Celular/efectos de los fármacos , Osteoblastos/citología , Titanio/farmacología , Grabado Ácido Dental , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Microscopía Electrónica de Rastreo , Microscopía Fluorescente , Propiedades de Superficie , Factores de Tiempo
11.
J Mater Sci Mater Med ; 27(10): 159, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27637929

RESUMEN

We report on the synthesis and characterization of a composite nanostructure based on the coupling of cerium fluoride (CeF3) and zinc oxide (ZnO) for applications in self-lighted photodynamic therapy. Self-lighted photodynamic therapy is a novel approach for the treatment of deep cancers by low doses of X-rays. CeF3 is an efficient scintillator: when illuminated by X-rays it emits UV light by fluorescence at 325 nm. In this work, we simulate this effect by exciting directly CeF3 fluorescence by UV radiation. ZnO is photo-activated in cascade, to produce reactive oxygen species. This effect was recently demonstrated in a physical mixture of distinct nanoparticles of CeF3 and ZnO [Radiat. Meas. (2013) 59:139-143]. Oxide surface provides a platform for rational functionalization, e.g., by targeting molecules for specific tumors. Our composite nanostructure is stable in aqueous media with excellent optical coupling between the two components; we characterize its uptake and its good cell viability, with very low intrinsic cytotoxicity in dark.


Asunto(s)
Cerio/química , Fluoruros/química , Nanocompuestos/química , Neoplasias/terapia , Fotoquimioterapia/métodos , Óxido de Zinc/química , Células A549 , Supervivencia Celular/efectos de los fármacos , Humanos , Luz , Microscopía Electrónica de Rastreo , Nanopartículas/química , Nanoestructuras/química , Óxidos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Espectrometría Raman , Rayos X
12.
Front Neurosci ; 9: 521, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26834546

RESUMEN

The design of electrodes based on conductive polymers in brain-machine interface technology offers the opportunity to exploit variably manufactured materials to reduce gliosis, indeed the most common brain response to chronically implanted neural electrodes. In fact, the use of conductive polymers, finely tailored in their physical-chemical properties, might result in electrodes with improved adaptability to the brain tissue and increased charge-transfer efficiency. Here we interfaced poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) ( PEDOT: PSS) doped with different amounts of ethylene glycol (EG) with rat hippocampal primary cultures grown for 3 weeks on these synthetic substrates. We used immunofluorescence and scanning electron microscopy (SEM) combined to single cell electrophysiology to assess the biocompatibility of PEDOT: PSS in terms of neuronal growth and synapse formation. We investigated neuronal morphology, density and electrical activity. We reported the novel observation that opposite to neurons, glial cell density was progressively reduced, hinting at the ability of this material to down regulate glial reaction. Thus, PEDOT: PSS is an attractive candidate for the design of new implantable electrodes, controlling the extent of glial reactivity without affecting neuronal viability and function.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...