Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Database (Oxford) ; 20232023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37951712

RESUMEN

Food-drug interactions (FDIs) occur when a food item alters the pharmacokinetics or pharmacodynamics of a drug. FDIs can be clinically relevant, as they can hamper or enhance the therapeutic effects of a drug and impact both their efficacy and their safety. However, knowledge of FDIs in clinical practice is limited. This is partially due to the lack of resources focused on FDIs. Here, we describe FooDrugs, a database that centralizes FDI knowledge retrieved from two different approaches: a natural processing language pipeline that extracts potential FDIs from scientific documents and clinical trials and a molecular similarity approach based on the comparison of gene expression alterations caused by foods and drugs. FooDrugs database stores a total of 3 430 062 potential FDIs, with 1 108 429 retrieved from scientific documents and 2 321 633 inferred from molecular data. This resource aims to provide researchers and clinicians with a centralized repository for potential FDI information that is free and easy to use. Database URL:  https://zenodo.org/records/8192515 Database DOI:  https://doi.org/10.5281/zenodo.6638469.


Asunto(s)
Interacciones Alimento-Droga , Lenguaje , Bases de Datos Factuales , Regulación de la Expresión Génica , Conocimiento
2.
Database (Oxford) ; 20232023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37465917

RESUMEN

The increasing prevalence of diet-related diseases calls for an improvement in nutritional advice. Personalized nutrition aims to solve this problem by adapting dietary and lifestyle guidelines to the unique circumstances of each individual. With the latest advances in technology and data science, researchers can now automatically collect and analyze large amounts of data from a variety of sources, including wearable and smart devices. By combining these diverse data, more comprehensive insights of the human body and its diseases can be achieved. However, there are still major challenges to overcome, including the need for more robust data and standardization of methodologies for better subject monitoring and assessment. Here, we present the AI4Food database (AI4FoodDB), which gathers data from a nutritional weight loss intervention monitoring 100 overweight and obese participants during 1 month. Data acquisition involved manual traditional approaches, novel digital methods and the collection of biological samples, obtaining: (i) biological samples at the beginning and the end of the intervention, (ii) anthropometric measurements every 2 weeks, (iii) lifestyle and nutritional questionnaires at two different time points and (iv) continuous digital measurements for 2 weeks. To the best of our knowledge, AI4FoodDB is the first public database that centralizes food images, wearable sensors, validated questionnaires and biological samples from the same intervention. AI4FoodDB thus has immense potential for fostering the advancement of automatic and novel artificial intelligence techniques in the field of personalized care. Moreover, the collected information will yield valuable insights into the relationships between different variables and health outcomes, allowing researchers to generate and test new hypotheses, identify novel biomarkers and digital endpoints, and explore how different lifestyle, biological and digital factors impact health. The aim of this article is to describe the datasets included in AI4FoodDB and to outline the potential that they hold for precision health research. Database URL https://github.com/AI4Food/AI4FoodDB.


Asunto(s)
Telemedicina , Dispositivos Electrónicos Vestibles , Humanos , Inteligencia Artificial , Dieta , Estilo de Vida
4.
Dev Biol ; 495: 63-75, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36596335

RESUMEN

Characterization of gene regulatory networks is fundamental to understanding homeostatic development. This process can be simplified by analyzing relatively simple genomes such as the genome of Drosophila melanogaster. In this work we have developed a computational framework in Drosophila to explore for the presence of gene regulatory circuits between two large groups of transcriptional regulators: the epigenetic group of the Polycomb/trithorax (PcG/trxG) proteins and the microRNAs (miRNAs). We have searched genome-wide for miRNA targets in PcG/trxG transcripts as well as for Polycomb Response Elements (PREs) in miRNA genes. Our results show that 10% of the analyzed miRNAs could be controlling PcG/trxG gene expression, while 40% of those miRNAs are putatively controlled by the selected set of PcG/trxG proteins. The integration of these analyses has resulted in the predicted existence of 3 classes of miRNA-PcG/trxG crosstalk interactions that define potential regulatory circuits. In the first class, miRNA-PcG circuits are defined by miRNAs that reciprocally crosstalk with PcG. In the second, miRNA-trxG circuits are defined by miRNAs that reciprocally crosstalk with trxG. In the third class, miRNA-PcG/trxG shared circuits are defined by miRNAs that crosstalk with both PcG and trxG regulators. These putative regulatory circuits may uncover a novel mechanism in Drosophila for the control of PcG/trxG and miRNAs levels of expression. The computational framework developed here for Drosophila melanogaster can serve as a model case for similar analyses in other species. Moreover, our work provides, for the first time, a new and useful resource for the Drosophila community to consult prior to experimental studies investigating the epigenetic regulatory networks of miRNA-PcG/trxG mediated gene expression.


Asunto(s)
Proteínas de Drosophila , MicroARNs , Animales , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas del Grupo Polycomb/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Complejo Represivo Polycomb 1/metabolismo
5.
Clin Epigenetics ; 14(1): 148, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36376973

RESUMEN

BACKGROUND: The molecular pathogenesis of T-cell large granular lymphocytic leukemia (T-LGLL), a mature T-cell leukemia arising commonly from T-cell receptor αß-positive CD8+ memory cytotoxic T cells, is only partly understood. The role of deregulated methylation in T-LGLL is not well known. We analyzed the epigenetic profile of T-LGLL cells of 11 patients compared to their normal counterparts by array-based DNA methylation profiling. For identification of molecular events driving the pathogenesis of T-LGLL, we compared the differentially methylated loci between the T-LGLL cases and normal T cells with chromatin segmentation data of benign T cells from the BLUEPRINT project. Moreover, we analyzed gene expression data of T-LGLL and benign T cells and validated the results by pyrosequencing in an extended cohort of 17 patients, including five patients with sequential samples. RESULTS: We identified dysregulation of DNA methylation associated with altered gene expression in T-LGLL. Since T-LGLL is a rare disease, the samples size is low. But as confirmed for each sample, hypermethylation of T-LGLL cells at various CpG sites located at enhancer regions is a hallmark of this disease. The interaction of BLC11B and C14orf64 as suggested by in silico data analysis could provide a novel pathogenetic mechanism that needs further experimental investigation. CONCLUSIONS: DNA methylation is altered in T-LGLL cells compared to benign T cells. In particular, BCL11B is highly significant differentially methylated in T-LGLL cells. Although our results have to be validated in a larger patient cohort, BCL11B could be considered as a potential biomarker for this leukemia. In addition, altered gene expression and hypermethylation of enhancer regions could serve as potential mechanisms for treatment of this disease. Gene interactions of dysregulated genes, like BLC11B and C14orf64, may play an important role in pathogenic mechanisms and should be further analyzed.


Asunto(s)
Leucemia Linfocítica Granular Grande , Humanos , Leucemia Linfocítica Granular Grande/genética , Leucemia Linfocítica Granular Grande/metabolismo , Leucemia Linfocítica Granular Grande/patología , Epigenoma , Metilación de ADN , Factores de Transcripción/genética , Biomarcadores/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Represoras/genética
6.
Cancers (Basel) ; 13(22)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34830809

RESUMEN

B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is the most common cancer in children, and significant progress has been made in diagnostics and the treatment of this disease based on the subtypes of BCP-ALL. However, in a large proportion of cases (B-other), recurrent BCP-ALL-associated genomic alterations remain unidentifiable by current diagnostic procedures. In this study, we performed RNA sequencing and analyzed gene fusions, expression profiles, and mutations in diagnostic samples of 185 children with BCP-ALL. Gene expression clustering showed that a subset of B-other samples partially clusters with some of the known subgroups, particularly DUX4-positive. Mutation analysis coupled with gene expression profiling revealed the presence of distinctive BCP-ALL subgroups, characterized by the presence of mutations in known ALL driver genes, e.g., PAX5 and IKZF1. Moreover, we identified novel fusion partners of lymphoid lineage transcriptional factors ETV6, IKZF1 and PAX5. In addition, we report on low blast count detection thresholds and show that the use of EDTA tubes for sample collection does not have adverse effects on sequencing and downstream analysis. Taken together, our findings demonstrate the applicability of whole-transcriptome sequencing for personalized diagnostics in pediatric ALL, including tentative classification of the B-other cases that are difficult to diagnose using conventional methods.

7.
Nucleic Acids Res ; 48(13): 7307-7320, 2020 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-32484543

RESUMEN

Previously, combined loss of different anticodon loop modifications was shown to impair the function of distinct tRNAs in Saccharomyces cerevisiae. Surprisingly, each scenario resulted in shared cellular phenotypes, the basis of which is unclear. Since loss of tRNA modification may evoke transcriptional responses, we characterized global transcription patterns of modification mutants with defects in either tRNAGlnUUG or tRNALysUUU function. We observe that the mutants share inappropriate induction of multiple starvation responses in exponential growth phase, including derepression of glucose and nitrogen catabolite-repressed genes. In addition, autophagy is prematurely and inadequately activated in the mutants. We further demonstrate that improper induction of individual starvation genes as well as the propensity of the tRNA modification mutants to form protein aggregates are diminished upon overexpression of tRNAGlnUUG or tRNALysUUU, the tRNA species that lack the modifications of interest. Hence, our data suggest that global alterations in mRNA translation and proteostasis account for the transcriptional stress signatures that are commonly triggered by loss of anticodon modifications in different tRNAs.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Glucosa/deficiencia , Nitrógeno/deficiencia , ARN de Transferencia/metabolismo , Autofagia , Glucosa/metabolismo , Mutación , Nitrógeno/metabolismo , ARN de Transferencia/genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
ALTEX ; 36(2): 277-288, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30570667

RESUMEN

Experiments with cultured mammalian cells represent an in vitro alternative to animal experiments. Fetal calf serum (FCS) is the most commonly used media supplement worldwide. FCS contains a mixture of largely undefined growth factors and cytokines, which support cell proliferation. This undefined nature of FCS is a source of experimental variation, undesired immune responses, possible contaminations, and because of its way of production an ethical concern. Thus, alternative, defined, valid, and reliable media supplements should be characterized in a large number of experiments. Human platelet lysate (hPL) is increasingly appreciated as an alternative to FCS. Since it is unclear whether cells respond differentially to clinically relevant chemotherapeutics inducing replicative stress and DNA damage (Hydroxyurea, Irinotecan), induction of reactive oxygen species (ROS), the tyrosine kinase inhibitor (TKi) Imatinib, and novel epigenetic modifiers belonging to the group of histone deacetylase inhibitors (HDACi), we investigated these issues. Here we show that cancer cells derived from leukemia and colon cancer grow very similarly in culture media with FCS or outdated hPL. Notably, cells have practically identical proteomes under both culture conditions. Moreover, cells grown with FCS or hPL respond equally to all types of drugs and stress conditions that we have tested. In addition, the transfection of blood cells by electroporation can be achieved under both conditions. Furthermore, we reveal that class I HDACs, but not HDAC6, are required for the expression of the pan-leukemic marker WT1 under various culture conditions. Hence, hPL is a moderately priced substitute for FCS in various experimental settings.


Asunto(s)
Antineoplásicos , Plaquetas/metabolismo , Técnicas de Cultivo de Célula/métodos , Medios de Cultivo/metabolismo , Animales , Células Cultivadas , Humanos , Suero
9.
Arch Toxicol ; 92(7): 2227-2243, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29845424

RESUMEN

Novel therapies are required for the treatment of metastatic renal cell carcinoma (RCC), which is associated with inoperable disease and patient death. Histone deacetylases (HDACs) are epigenetic modifiers and potential drug targets. Additional information on molecular pathways that are altered by histone deacetylase inhibitors (HDACi) in RCC cells is warranted. It should equally be delineated further which individual members of the 18 mammalian HDACs determine the survival and tumor-associated gene expression programs of such cells. Most importantly, an ongoing dispute whether HDACi promote or suppress metastasis-associated epithelial-to-mesenchymal transition (EMT) has to be resolved before HDACi are considered further as clinically relevant drugs. Here we show how HDACi affect murine and primary human RCC cells. We find that these agents induce morphological alterations resembling the metastasis-associated EMT. However, individual and proteomics-based analyses of epithelial and mesenchymal marker proteins and of EMT-associated transcription factors (EMT-TFs) reveal that HDACi do not trigger EMT. Pathway deconvolution analysis identifies reduced proliferation and apoptosis induction as key effects of HDACi. Furthermore, these drugs lead to a reduction of the cell adhesion molecule E-cadherin and of the platelet-derived growth factor receptor-ß (PDGFRß), which is a key driver of RCC metastasis formation. Accordingly, HDACi reduce the pulmonary spread of syngeneic transplanted renal carcinoma cells in mice. Specific genetic elimination of the histone deacetylases HDAC1/HDAC2 reflects the effects of pharmacological HDAC inhibition regarding growth suppression, apoptosis, and the downregulation of E-cadherin and PDGFRß. Thus, these epigenetic modifiers are non-redundant gatekeepers of cell fate and precise pharmacological targets.


Asunto(s)
Carcinoma de Células Renales/enzimología , Histona Desacetilasa 1/antagonistas & inhibidores , Histona Desacetilasa 2/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/farmacología , Neoplasias Renales/enzimología , Animales , Apoptosis/efectos de los fármacos , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Inhibidores de Histona Desacetilasas/uso terapéutico , Humanos , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/patología , Ratones Endogámicos BALB C , Ensayos Antitumor por Modelo de Xenoinjerto
10.
BMC Med ; 15(1): 101, 2017 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-28578692

RESUMEN

BACKGROUND: Cutaneous melanoma is the deadliest skin cancer, with an increasing incidence and mortality rate. Currently, staging of patients with primary melanoma is performed using histological biomarkers such as tumor thickness and ulceration. As disruption of the epigenomic landscape is recognized as a widespread feature inherent in tumor development and progression, we aimed to identify novel biomarkers providing additional clinical information over current factors using unbiased genome-wide DNA methylation analyses. METHODS: We performed a comprehensive DNA methylation analysis during all progression stages of melanoma using Infinium HumanMethylation450 BeadChips on a discovery cohort of benign nevi (n = 14) and malignant melanoma from both primary (n = 33) and metastatic (n = 28) sites, integrating the DNA methylome with gene expression data. We validated the discovered biomarkers in three independent validation cohorts by pyrosequencing and immunohistochemistry. RESULTS: We identified and validated biomarkers for, and pathways involved in, melanoma development (e.g., HOXA9 DNA methylation) and tumor progression (e.g., TBC1D16 DNA methylation). In addition, we determined a prognostic signature with potential clinical applicability and validated PON3 DNA methylation and OVOL1 protein expression as biomarkers with prognostic information independent of tumor thickness and ulceration. CONCLUSIONS: Our data underscores the importance of epigenomic regulation in triggering metastatic dissemination through the inactivation of central cancer-related pathways. Inactivation of cell-adhesion and differentiation unleashes dissemination, and subsequent activation of inflammatory and immune system programs impairs anti-tumoral defense pathways. Moreover, we identify several markers of tumor development and progression previously unrelated to melanoma, and determined a prognostic signature with potential clinical utility.


Asunto(s)
Metilación de ADN , ADN de Neoplasias/metabolismo , Melanoma/genética , Melanoma/fisiopatología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/fisiopatología , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/genética , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Melanoma Cutáneo Maligno
11.
Cell Rep ; 19(6): 1268-1280, 2017 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-28494874

RESUMEN

Colorectal cancer (CRC) is characterized by major inter-tumor diversity that complicates the prediction of disease and treatment outcomes. Recent efforts help resolve this by sub-classification of CRC into natural molecular subtypes; however, this strategy is not yet able to provide clinicians with improved tools for decision making. We here present an extended framework for CRC stratification that specifically aims to improve patient prognostication. Using transcriptional profiles from 1,100 CRCs, including >300 previously unpublished samples, we identify cancer cell and tumor archetypes and suggest the tumor microenvironment as a major prognostic determinant that can be influenced by the microbiome. Notably, our subtyping strategy allowed identification of archetype-specific prognostic biomarkers that provided information beyond and independent of UICC-TNM staging, MSI status, and consensus molecular subtyping. The results illustrate that our extended subtyping framework, combining subtyping and subtype-specific biomarkers, could contribute to improved patient prognostication and may form a strong basis for future studies.


Asunto(s)
Biomarcadores de Tumor/clasificación , Neoplasias Colorrectales/genética , Transcriptoma , Biomarcadores de Tumor/genética , Estudios de Casos y Controles , Neoplasias Colorrectales/clasificación , Neoplasias Colorrectales/patología , Humanos , Microbiota , Microambiente Tumoral
12.
Mol Immunol ; 66(2): 171-9, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25801305

RESUMEN

The CD69 type II C-type lectin is one of the earliest indicators of leukocyte activation acting in lymphocyte migration and cytokine secretion. CD69 expression in hematopoietic lineage undergoes rapid changes depending on the cell-lineage, the activation state or the localization of the cell where it is expressed, suggesting a complex and tightly controlled regulation. Here we provide new insights on the transcriptional regulation of CD69 gene in mammal species. Through in silico studies, we analyzed several regulatory features of the 4 upstream conserved non-coding sequences (CNS 1-4) previously described, confirming a major function of CNS2 in the transcriptional regulation of CD69. In addition, multiple transcription binding sites are identified in the CNS2 region by DNA cross-species conservation analysis. By functional approaches we defined a core region of 226bp located within CNS2 as the main enhancer element of CD69 transcription in the hematopoietic cells analyzed. By chromatin immunoprecipitation, binding of RUNX1 to the core-CNS2 was shown in a T cell line. In addition, we found an activating but not essential role of RUNX1 in CD69 gene transcription by site-directed mutagenesis and RNA silencing, probably through the interaction with this potent enhancer specifically in the hematopoietic lineage. In summary, in this study we contribute with new evidences to the landscape of the transcriptional regulation of the CD69 gene.


Asunto(s)
Región de Flanqueo 5' , Antígenos CD/genética , Antígenos de Diferenciación de Linfocitos T/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Lectinas Tipo C/genética , Transcripción Genética , Secuencia de Aminoácidos , Animales , Antígenos CD/química , Antígenos CD/metabolismo , Antígenos de Diferenciación de Linfocitos T/química , Antígenos de Diferenciación de Linfocitos T/metabolismo , Sitios de Unión , Línea Celular Tumoral , Secuencia Conservada , Subunidad alfa 2 del Factor de Unión al Sitio Principal/química , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Genes Reporteros , Humanos , Células Jurkat , Células K562 , Lectinas Tipo C/química , Lectinas Tipo C/metabolismo , Luciferasas/genética , Luciferasas/metabolismo , Datos de Secuencia Molecular , Unión Proteica , Transfección , Transgenes
13.
J Immunol ; 183(10): 6513-21, 2009 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-19841192

RESUMEN

CD69 is a type II C-type lectin involved in lymphocyte migration and cytokine secretion. CD69 expression represents one of the earliest available indicators of leukocyte activation and its rapid induction occurs through transcriptional activation. In this study we examined the molecular mechanism underlying mouse CD69 gene transcription in vivo in T and B cells. Analysis of the 45-kb region upstream of the CD69 gene revealed evolutionary conservation at the promoter and at four noncoding sequences (CNS) that were called CNS1, CNS2, CNS3, and CNS4. These regions were found to be hypersensitive sites in DNase I digestion experiments, and chromatin immunoprecipitation assays showed specific epigenetic modifications. CNS2 and CNS4 displayed constitutive and inducible enhancer activity in transient transfection assays in T cells. Using a transgenic approach to test CNS function, we found that the CD69 promoter conferred developmentally regulated expression during positive selection of thymocytes but could not support regulated expression in mature lymphocytes. Inclusion of CNS1 and CNS2 caused suppression of CD69 expression, whereas further addition of CNS3 and CNS4 supported developmental-stage and lineage-specific regulation in T cells but not in B cells. We concluded CNS1-4 are important cis-regulatory elements that interact both positively and negatively with the CD69 promoter and that differentially contribute to CD69 expression in T and B cells.


Asunto(s)
Antígenos CD/genética , Antígenos de Diferenciación de Linfocitos T/genética , Linfocitos B/inmunología , Epigénesis Genética , Regiones Promotoras Genéticas , Linfocitos T/inmunología , Animales , Linfocitos B/efectos de los fármacos , Secuencia de Bases , Cromatina/genética , Cromatina/inmunología , Cromatina/metabolismo , Secuencia Conservada , Perros , Evolución Molecular , Histonas/genética , Histonas/inmunología , Histonas/metabolismo , Humanos , Inductores de Interferón/farmacología , Células Jurkat , Lectinas Tipo C , Ratones , Ratones Transgénicos , Poli I-C/farmacología , Linfocitos T/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...