Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Probiotics Antimicrob Proteins ; 15(4): 1001-1013, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37178405

RESUMEN

Probiotic Limosilactobacillus reuteri DSM 17938 (DSM 17938) prolongs the survival of Treg-deficient scurfy (SF) mice and reduces multiorgan inflammation by a process requiring adenosine receptor 2A (A2A) on T cells. We hypothesized that L. reuteri-derived ecto-5'-nucleotidase (ecto-5'NT) activity acts to generate adenosine, which may be a central mediator for L. reuteri protection in SF mice. We evaluated DSM 17938-5'NT activity and the associated adenosine and inosine levels in plasma, gut, and liver of SF mice. We examined orally fed DSM 17938, DSM 17938Δ5NT (with a deleted 5'NT gene), and DSM 32846 (BG-R46) (a naturally selected strain derived from DSM 17938). Results showed that DSM 17938 and BG-R46 produced adenosine while "exhausting" AMP, whereas DSM 17938∆5NT did not generate adenosine in culture. Plasma 5'NT activity was increased by DSM 17938 or BG-R46, but not by DSM 17938Δ5NT in SF mice. BG-R46 increased both adenosine and inosine levels in the cecum of SF mice. DSM 17938 increased adenosine levels, whereas BG-R46 increased inosine levels in the liver. DSM 17938Δ5NT did not significantly change the levels of adenosine or inosine in the GI tract or the liver of SF mice. Although regulatory CD73+CD8+ T cells were decreased in spleen and blood of SF mice, these regulatory T cells could be increased by orally feeding DSM 17938 or BG-R46, but not DSM 17938Δ5NT. In conclusion, probiotic-5'NT may be a central mediator of DSM 17938 protection against autoimmunity. Optimal 5'NT activity from various probiotic strains could be beneficial in treating Treg-associated immune disorders in humans.


Asunto(s)
5'-Nucleotidasa , Adenosina , Humanos , Animales , Ratones , 5'-Nucleotidasa/genética , 5'-Nucleotidasa/metabolismo , Linfocitos T Reguladores/metabolismo , Linfocitos T CD8-positivos/metabolismo , Antiinflamatorios , Inosina
2.
Res Sq ; 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37066419

RESUMEN

Probiotic Limosilactobacillus reuteri DSM 17938 (DSM 17938) prolonges the survival of Treg-deficient scurfy (SF) mice and reduces multiorgan inflammation by a process requiring adenosine receptor 2A (A 2A ) on T cells. We hypothesized that L. reuteri -derived ecto-5'-nucleotidase (ecto-5'NT) activity acts to generate adenosine, which may be a central mediator for L. reuteri protection in SF mice. We evaluated DSM 17938-5'NT activity and the associated adenosine and inosine levels in plasma, gut and liver of SF mice. We examined orally fed DSM 17938, DSM 17938Δ5NT (with a deleted 5'NT gene), and DSM 32846 (BG-R46) (a naturally selected strain derived from DSM 17938). Results showed that DSM 17938 and BG-R46 produced adenosine while "exhausting" AMP, whereas DSM 17938∆5NT did not generate adenosine in culture. Plasma 5'NT activity was increased by DSM 17938 or BG-R46, but not by DSM 17938Δ5NT in SF mice. BG-R46 increased both adenosine and inosine levels in the cecum of SF mice. DSM 17938 increased adenosine levels, whereas BG-R46 increased inosine levels in the liver. DSM 17938Δ5NT did not significantly change the levels of adenosine or inosine in the GI tract or the liver of SF mice. Although regulatory CD73 + CD8 + T cells were decreased in spleen and blood of SF mice, these regulatory T cells could be increased by orally feeding DSM 17938 or BG-R46, but not DSM 17938Δ5NT. In conclusion, probiotic-5'NT may be a central mediator of DSM 17938 protection against autoimmunity. Optimal 5'NT activity from various probiotic strains could be beneficial in treating Treg-associated immune disorders in humans.

3.
Front Pediatr ; 8: 592972, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33330286

RESUMEN

Social media use is increasing in children in the U.S., which could be related to the high prevalence of functional gastrointestinal disorders in this population. Objective: To investigate the relationship of social media use with the severity of gastrointestinal symptoms in patients with a functional abdominal pain or irritable bowel syndrome diagnosis. Study Design: We administered a questionnaire to collect information about screen time, demographics, and a modified Validated Varni PedsQL Gastrointestinal symptom scale which assesses the severity of gastrointestinal (GI) symptoms. Results: We surveyed a total of 59 subjects, which included 26 subjects with functional abdominal pain and 33 age-matched healthy controls. The median score across all 8 scales was about a third less for cases (median: 63; IQR: 55-78) than controls (median: 93; IQR: 83-95) (p < 0.001). Mean screen time in the study group (341 min/day) was very similar to that in the control group (331 min/day). There was no statistically significant association between screen time per day and the number of platforms used for either the cases or controls. YouTube (92%) and Instagram (88%) were the first and second most popular platforms used by the children with functional abdominal pain; Instagram (97%) and Snapchat (82%) were the most popular platforms in the healthy controls. Interestingly, social media were more often used for entertainment, reading, and productivity by the children with functional abdominal pain (p < 0.05). Conclusion: The amount of screen time/day and the number of social media platforms used does not correlate with the severity of abdominal pain and other GI symptoms in adolescents with FGID. Further research will be needed to confirm if the platforms are used differently by children with functional gastrointestinal disorder.

4.
Sci Signal ; 13(635)2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32518142

RESUMEN

Endothelial-to-mesenchymal transition (EndMT) is a cellular transdifferentiation program in which endothelial cells partially lose their endothelial identity and acquire mesenchymal-like features. Renal capillary endothelial cells can undergo EndMT in association with persistent damage of the renal parenchyma. The functional consequence(s) of EndMT in kidney fibrosis remains unexplored. Here, we studied the effect of Twist or Snail deficiency in endothelial cells on EndMT in kidney fibrosis. Conditional deletion of Twist1 (which encodes Twist) or Snai1 (which encodes Snail) in VE-cadherin+ or Tie1+ endothelial cells inhibited the emergence of EndMT and improved kidney fibrosis in two different kidney injury/fibrosis mouse models. Suppression of EndMT limited peritubular vascular leakage, reduced tissue hypoxia, and preserved tubular epithelial health and function. Hypoxia, which was exacerbated by EndMT, resulted in increased Myc abundance in tubular epithelial cells, enhanced glycolysis, and suppression of fatty acid oxidation. Pharmacological suppression or epithelial-specific genetic ablation of Myc in tubular epithelial cells ameliorated fibrosis and restored renal parenchymal function and metabolic homeostasis. Together, these findings demonstrate a functional role for EndMT in the response to kidney capillary endothelial injury and highlight the contribution of endothelial-epithelial cross-talk in the development of kidney fibrosis with a potential for therapeutic intervention.


Asunto(s)
Reprogramación Celular , Endotelio Vascular/metabolismo , Enfermedades Renales/metabolismo , Túbulos Renales/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Endotelio Vascular/patología , Fibrosis , Riñón , Enfermedades Renales/genética , Enfermedades Renales/patología , Túbulos Renales/patología , Ratones , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-myc/genética
5.
Oncogene ; 38(25): 5038-5049, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30858546

RESUMEN

Epigenetic changes that cause dysregulated gene expression during progression of androgen-independent prostate cancer (PCa) and metastatic skeletal lesions remain elusive. Here, we explored the role of histone demethylase NO66 in the pathogenesis of PCa and bone metastasis-related skeletal lesions. Tissue and cDNA microarrays of PCa were analyzed for NO66 mRNA and protein levels. We examined the effects of gain and loss of NO66 function on cell viability, colony formation, migration, invasion, and tumor-induced skeletal lesions in femoral bone. RNAseq and ChIPseq were performed to elucidate NO66-target genes in PCa. We report that NO66 levels were upregulated in advanced primary prostate tumors compared to normal tissue or tumors with low Gleason scores. Forced expression of NO66 promoted cell survival and invasion of PCa cells; whereas, knockdown of NO66 resulted in decreased cell survival and increased sensitivity to docetaxel. NO66-overexpressing PC3 cells implanted into the femoral bone of male SCID mice caused massive bone loss and stimulation of mouse osteoclast-promoting genes, including Dickkopf1, Cathepsin K, Nf-kß,; and Calcr, suggesting a role for NO66 in tumor growth in bone and osteoclast activity. Combined RNAseq and ChIP-seq revealed that NO66 activates the survival gene MCL1, the invasion-associated genes IGFBP5 and MMP3, the pro-oncogenic genes CTNNB1 and CCND1, and the epigenetic modifier gene KMT2A in androgen-independent PCa. Our findings uncover the role of NO66 as a key oncogenic driver in PCa, causing osteolytic lesions through upstream epigenetic regulation of key genes for survival, invasion and metastasis, and pro-osteoclastic factors.


Asunto(s)
Transformación Celular Neoplásica/genética , Dioxigenasas/fisiología , Histona Demetilasas/fisiología , Osteólisis/genética , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Animales , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Neoplasias Óseas/secundario , Línea Celular Tumoral , Transformación Celular Neoplásica/metabolismo , Dioxigenasas/genética , Epigénesis Genética/genética , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Histona Demetilasas/genética , Histonas/metabolismo , Humanos , Masculino , Ratones , Ratones SCID , Células 3T3 NIH , Osteólisis/patología , Células PC-3 , Neoplasias de la Próstata Resistentes a la Castración/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...