Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 39(16): 5803-5813, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37053455

RESUMEN

It is a daunting task to prepare polyolefin nanocomposites that contain well-exfoliated nanoplatelets due to the nonpolar and high crystallinity nature of polyolefins. In this research, a robust approach was developed to prepare polyethylene (PE) nanocomposites by grafting maleated polyethylene (MPE) onto pre-exfoliated α-zirconium phosphate (ZrP) nanoplatelets via a simple amine-anhydride reaction to form ZrP-g-MPE. Several variables, including maleic anhydride (MA) content, MPE graft density, MPE molecular weight, and PE matrix crystallinity, were investigated to determine how they influence ZrP-g-MPE dispersion in PE. It was found that grafted PE has a different morphology and that the long PE brushes with medium graft density on ZrP can achieve sufficient chain entanglement and cocrystallization with PE matrix to stabilize and maintain ZrP-g-MPE dispersion after solution or melt mixing. This leads to enhanced Young's modulus, yield stress, and ductility. The structure-property relationship of PE/ZrP-g-MPE nanocomposites and usefulness of this study for the preparation of high-performance polyolefin nanocomposites are discussed.

2.
RSC Adv ; 11(54): 33990-33995, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-35497293

RESUMEN

A Au/electroactive poly(amic acid) (Au/EPAA) composite was synthesized and characterized, and its catalytic ability was evaluated. EPAA was synthesized via oxidative coupling polymerization and Au nanoparticles were anchored to the amino and carboxyl groups. The Au/EPAA composite was characterized via X-ray diffraction analysis, X-ray photoelectron spectroscopy, and scanning electron microscopy, which confirmed that the Au nanoparticles were well dispersed on the EPAA surface. p-Nitrophenol was reduced to p-aminophenol within 5 min at room temperature, with a rate constant of 0.84 min-1. Cycling measurements showed that the Au/EPAA composite achieved higher than 92% conversion. The Au/EPAA composite showed excellent performance and stability as a catalyst for the reduction of p-nitrophenol to p-aminophenol.

3.
Polymers (Basel) ; 12(1)2020 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-31947895

RESUMEN

A novel aniline tetramer (AT) capped electroactive imide oligomer (EIO) for metal corrosion protection was successfully synthesized in this study. The chemical structure of the EIO was characterized by liquid chromatography-mass spectrometry and Fourier-transform infrared spectroscopy. Furthermore, the redox behavior of EIO was identified using electrochemical cyclic voltammetry studies. An EIO coated on a cold-rolled steel (CRS) electrode was found to possess superior corrosion resistance to polyimide (PI) on a series of electrochemical corrosion measurements in 3.5 wt.% NaCl solution over an extended period (30 days). The mechanism for the advanced corrosion protection of the PI coating on the CRS electrode could be attributed to the redox catalytic capabilities of the AT units present in the EIO. These capabilities may induce the formation of passive metal oxide layers on the CRS electrode. Scanning electron microscopy and X-ray photoelectron spectroscopy were used to analyze the surface condition of the CRS after the corrosion test. EIO- and PI-coated electrodes were identified by a series of electrochemical measurements, including corrosion potential (Ecorr), polarization resistance (Rp), and corrosion current (Icorr) measurements, along with electrochemical impedance spectroscopy (EIS).

4.
RSC Adv ; 11(1): 71-77, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35423007

RESUMEN

This study proposes a cost-effective, energy-saving, and green process that uses π-π interactions to modify graphene oxide (GO), and the conjugate structure of aniline tetramer (AT) to enhance the dispersion of GO. Au/aniline tetramer-graphene oxide (Au/ATGO) composites were synthesized and applied as a catalyst in this study. The adsorption of AT on GO, via π-π interaction, formed ATGO composites. Subsequently, the amine group on ATGO was stably anchored on Au nanoparticles (Au NPs) to form Au/ATGO composites. The Au/ATGO composites were characterized and the electroactive properties determined by Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, and cyclic voltammetry. The Au/ATGO composites showed excellent performance and stability as catalysts when applied for the reduction of nitrophenol to aminophenol within 225 s and the rate constant was 0.02 s-1. The activation energy for the reduction of 4-NP and 2-NP was 48.10 and 68.71 kJ mol-1, respectively. Following a recycling test repeated 20 times, the Au/ATGO composites maintained a conversion rate higher than 94%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...