Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Immunity ; 56(10): 2342-2357.e10, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37625409

RESUMEN

The heart is an autoimmune-prone organ. It is crucial for the heart to keep injury-induced autoimmunity in check to avoid autoimmune-mediated inflammatory disease. However, little is known about how injury-induced autoimmunity is constrained in hearts. Here, we reveal an unknown intramyocardial immunosuppressive program driven by Tbx1, a DiGeorge syndrome disease gene that encodes a T-box transcription factor (TF). We found induced profound lymphangiogenic and immunomodulatory gene expression changes in lymphatic endothelial cells (LECs) after myocardial infarction (MI). The activated LECs penetrated the infarcted area and functioned as intramyocardial immune hubs to increase the numbers of tolerogenic dendritic cells (tDCs) and regulatory T (Treg) cells through the chemokine Ccl21 and integrin Icam1, thereby inhibiting the expansion of autoreactive CD8+ T cells and promoting reparative macrophage expansion to facilitate post-MI repair. Mimicking its timing and implementation may be an additional approach to treating autoimmunity-mediated cardiac diseases.

3.
J Mol Cell Biol ; 13(1): 41-58, 2021 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-33582796

RESUMEN

Heart regeneration occurs by dedifferentiation and proliferation of pre-existing cardiomyocytes (CMs). However, the signaling mechanisms by which injury induces CM renewal remain incompletely understood. Here, we find that cardiac injury in zebrafish induces expression of the secreted Wnt inhibitors, including Dickkopf 1 (Dkk1), Dkk3, secreted Frizzled-related protein 1 (sFrp1), and sFrp2, in cardiac tissue adjacent to injury sites. Experimental blocking of Wnt activity via Dkk1 overexpression enhances CM proliferation and heart regeneration, whereas ectopic activation of Wnt8 signaling blunts injury-induced CM dedifferentiation and proliferation. Although Wnt signaling is dampened upon injury, the cytoplasmic ß-catenin is unexpectedly increased at disarrayed CM sarcomeres in myocardial wound edges. Our analyses indicated that p21-activated kinase 2 (Pak2) is induced at regenerating CMs, where it phosphorylates cytoplasmic ß-catenin at Ser 675 and increases its stability at disassembled sarcomeres. Myocardial-specific induction of the phospho-mimetic ß-catenin (S675E) enhances CM dedifferentiation and sarcomere disassembly in response to injury. Conversely, inactivation of Pak2 kinase activity reduces the Ser 675-phosphorylated ß-catenin (pS675-ß-catenin) and attenuates CM sarcomere disorganization and dedifferentiation. Taken together, these findings demonstrate that coordination of Wnt signaling inhibition and Pak2/pS675-ß-catenin signaling enhances zebrafish heart regeneration by supporting CM dedifferentiation and proliferation.


Asunto(s)
Lesiones Cardíacas/patología , Miocitos Cardíacos/patología , Regeneración/fisiología , Vía de Señalización Wnt/fisiología , Animales , Proliferación Celular , Modelos Animales de Enfermedad , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Sarcómeros/patología , Pez Cebra , Proteínas de Pez Cebra/metabolismo , beta Catenina/metabolismo
4.
Development ; 147(18)2020 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-32988975

RESUMEN

Teleost zebrafish and neonatal mammalian hearts exhibit the remarkable capacity to regenerate through dedifferentiation and proliferation of pre-existing cardiomyocytes (CMs). Although many mitogenic signals that stimulate zebrafish heart regeneration have been identified, transcriptional programs that restrain injury-induced CM renewal are incompletely understood. Here, we report that mutations in gridlock (grl; also known as hey2), encoding a Hairy-related basic helix-loop-helix transcriptional repressor, enhance CM proliferation and reduce fibrosis following damage. In contrast, myocardial grl induction blunts CM dedifferentiation and regenerative responses to heart injury. RNA sequencing analyses uncover Smyd2 lysine methyltransferase (KMT) as a key transcriptional target repressed by Grl. Reduction in Grl protein levels triggered by injury induces smyd2 expression at the wound myocardium, enhancing CM proliferation. We show that Smyd2 functions as a methyltransferase and modulates the Stat3 methylation and phosphorylation activity. Inhibition of the KMT activity of Smyd2 reduces phosphorylated Stat3 at cardiac wounds, suppressing the elevated CM proliferation in injured grl mutant hearts. Our findings establish an injury-specific transcriptional repression program in governing CM renewal during heart regeneration, providing a potential strategy whereby silencing Grl repression at local regions might empower regeneration capacity to the injured mammalian heart.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Corazón/fisiología , Lisina/genética , Metiltransferasas/genética , Regeneración/genética , Transcripción Genética/genética , Vertebrados/genética , Proteínas de Pez Cebra/genética , Animales , Animales Recién Nacidos , Diferenciación Celular/genética , Proliferación Celular/genética , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Fosforilación/genética , Factor de Transcripción STAT3/genética , Transducción de Señal/genética , Pez Cebra/genética
5.
Front Cell Dev Biol ; 8: 738, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32850848

RESUMEN

Heart regeneration requires replenishment of lost cardiomyocytes (CMs) and cells of the endocardial lining. However, the signaling regulation and transcriptional control of myocardial dedifferentiation and endocardial activation are incompletely understood during cardiac regeneration. Here, we report that T-Box Transcription Factor 20 (Tbx20) is induced rapidly in the myocardial wound edge in response to various sources of cardiac damages in zebrafish. Inducing Tbx20 specifically in the adult myocardium promotes injury-induced CM proliferation through CM dedifferentiation, leading to loss of CM cellular contacts and re-expression of cardiac embryonic or fetal gene programs. Unexpectedly, we identify that myocardial Tbx20 induction activates the endocardium at the injury site with enhanced endocardial cell extension and proliferation, where it induces the endocardial Bone morphogenetic protein 6 (Bmp6) signaling. Pharmacologically inactivating endocardial Bmp6 signaling reduces expression of its targets, Id1 and Id2b, attenuating the increased endocardial regeneration in tbx20-overexpressing hearts. Altogether, our study demonstrates that Tbx20 induction promotes adult heart regeneration by inducing cardiomyocyte dedifferentiation as well as non-cell-autonomously enhancing endocardial cell regeneration.

6.
Biochim Biophys Acta Mol Basis Dis ; 1866(12): 165906, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32738303

RESUMEN

Heterotaxy syndrome (HS) involves dysfunction of multiple systems resulting from abnormal left-right (LR) body patterning. Most HS patients present with complex congenital heart diseases (CHD), the disability and mortality of HS patients are extremely high. HS has great heterogeneity in phenotypes and genotypes, which have rendered gene discovery challenging. The aim of this study was to identify novel genes that underlie pathogenesis of HS patients with CHD. Whole exome sequencing was performed in 25 unrelated HS cases and 100 healthy controls; 19 nonsynonymous variants in 6 novel candidate genes (FLNA, ITGA1, PCNT, KIF7, GLI1, KMT2D) were identified. The functions of candidate genes were further analyzed in zebrafish model by CRISPR/Cas9 technique. Genome-editing was successfully introduced into the gene loci of flna, kmt2d and kif7, but the phenotypes were heterogenous. Disruption of each gene disturbed normal cardiac looping while kif7 knockout had a more prominent effect on liver budding and pitx2 expression. Our results revealed three potential HS pathogenic genes with probably different molecular mechanisms.


Asunto(s)
Proteínas de Unión al ADN/genética , Secuenciación del Exoma , Filaminas/genética , Cardiopatías Congénitas/genética , Síndrome de Heterotaxia/genética , Cinesinas/genética , Proteínas de Neoplasias/genética , Proteína con Dedos de Zinc GLI1/genética , Animales , Antígenos/genética , Estudios de Cohortes , Edición Génica , Humanos , Integrina alfa1/genética , Pez Cebra
7.
J Mol Cell Biol ; 12(1): 42-54, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30925593

RESUMEN

There are intense interests in discovering proregenerative medicine leads that can promote cardiac differentiation and regeneration, as well as repair damaged heart tissues. We have combined zebrafish embryo-based screens with cardiomyogenesis assays to discover selective small molecules that modulate heart development and regeneration with minimal adverse effects. Two related compounds with novel structures, named as Cardiomogen 1 and 2 (CDMG1 and CDMG2), were identified for their capacity to promote myocardial hyperplasia through expansion of the cardiac progenitor cell population. We find that Cardiomogen acts as a Wnt inhibitor by targeting ß-catenin and reducing Tcf/Lef-mediated transcription in cultured cells. CDMG treatment of amputated zebrafish hearts reduces nuclear ß-catenin in injured heart tissue, increases cardiomyocyte (CM) proliferation, and expedites wound healing, thus accelerating cardiac muscle regeneration. Importantly, Cardiomogen can alleviate the functional deterioration of mammalian hearts after myocardial infarction. Injured hearts exposed to CDMG1 display increased newly formed CMs and reduced fibrotic scar tissue, which are in part attributable to the ß-catenin reduction. Our findings indicate Cardiomogen as a Wnt inhibitor in enhancing injury-induced CM proliferation and heart regeneration, highlighting the values of embryo-based small molecule screens in discovery of effective and safe medicine leads.


Asunto(s)
Lesiones Cardíacas/tratamiento farmacológico , Infarto del Miocardio/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Proteínas Wnt/antagonistas & inhibidores , Vía de Señalización Wnt/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Animales , Animales Modificados Genéticamente , Diferenciación Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Células Madre Embrionarias de Ratones/metabolismo , Miocitos Cardíacos/metabolismo , Medicina Regenerativa/métodos , Transducción de Señal/efectos de los fármacos , Pez Cebra/embriología , Proteínas de Pez Cebra/metabolismo , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...