Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 15(2)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38398931

RESUMEN

We demonstrate a method for the realization of highly nonlinear optical 4-(4-dimethylaminostyryl)- 1-methylpyridinium tosylate (DAST) two-dimensional structures by a double-step technique. The desired polymeric structures were first fabricated by using the multiple exposure of the two-beam interference technique, and the DAST nanoscrystals were then prepared inside the air-voids of these photoresist templates, resulting in nonlinear periodic structures. The nonlinear properties were characterized by optical and scanning microscopies, as well as by second-harmonic generation technique. This nonlinear modulation is very promising for the enhancement of nonlinear conversion rates, such as terahertz generation, by using the quasi-phase matching technique.

2.
Nanotechnology ; 35(16)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38154138

RESUMEN

Solid-state single-photon emitters (SPEs) commonly encounter the limitation of quasi-omnidirectional radiation patterns, which poses challenges in utilizing their emission with conventional optical instruments. In this study, we demonstrate the tailoring of the far-field radiation patterns of SPEs based on colloidal quantum dots (QDs), both theoretically and experimentally, by employing a polymer-based dielectric antenna. We introduce a simple and cost-effective technique, namely low one-photon absorption direct laser writing, to achieve precise coupling of a QD into an all-polymer circular waveguide resonance grating. By optimizing the geometry parameters of the structure using 3D finite-difference time-domain simulations, resonance at the emission wavelength of QDs is achieved in the direction perpendicular to the substrate, resulting in photon streams with remarkably high directivity on both sides of the grating. Theoretical calculations predict beam divergence values below 2°, while experimental measurements using back focal plane imaging yield divergence angles of approximately 8°. Our study contributes to the evaluation of concentric circular grating structures employing low refractive index polymer materials, thereby expanding the possibilities for their application.

3.
Sensors (Basel) ; 23(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37687829

RESUMEN

The accurate, rapid, and specific detection of DNA strands in solution is becoming increasingly important, especially in biomedical applications such as the trace detection of COVID-19 or cancer diagnosis. In this work we present the design, elaboration and characterization of an optofluidic sensor based on a polymer-based microresonator which shows a quick response time, a low detection limit and good sensitivity. The device is composed of a micro-racetrack waveguide vertically coupled to a bus waveguide and embedded within a microfluidic circuit. The spectral response of the microresonator, in air or immersed in deionised water, shows quality factors up to 72,900 and contrasts up to 0.9. The concentration of DNA strands in water is related to the spectral shift of the microresonator transmission function, as measured at the inflection points of resonance peaks in order to optimize the signal-over-noise ratio. After functionalization by a DNA probe strand on the surface of the microresonator, a specific and real time measurement of the complementary DNA strands in the solution is realized. Additionally, we have inferred the dissociation constant value of the binding equilibrium of the two complementary DNA strands and evidenced a sensitivity of 16.0 pm/µM and a detection limit of 121 nM.


Asunto(s)
COVID-19 , Humanos , ADN Complementario , Medios de Contraste , Polímeros , Agua
4.
Polymers (Basel) ; 15(9)2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37177347

RESUMEN

In the field of quantum technology, there has been a growing interest in fully integrated systems that employ single photons due to their potential for high performance and scalability. Here, a simple method is demonstrated for creating on-chip 3D printed polymer waveguide-coupled single-photon emitters based on colloidal quantum dots (QDs). By using a simple low-one photon absorption technique, we were able to create a 3D polymeric crossed-arc waveguide structure with a bright QD on top. These waveguides can conduct both excitation laser and emitted single photons, which facilitates the characterization of single-photon signals at different outputs with a conventional confocal scanning system. To optimize the guiding effect of the polymeric waveguide structures, comprehensive 3D finite-difference time-domain simulations were performed. Our method provides a straightforward and cost-effective way to integrate high-performance single-photon sources with on-chip photonic devices, enabling scalable and versatile quantum photonic circuits for various applications.

5.
Micromachines (Basel) ; 14(5)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37241692

RESUMEN

Polymer-based micro-optical components are very important for applications in optical communication. In this study, we theoretically investigated the coupling of polymeric waveguide and microring structures and experimentally demonstrated an efficient fabrication method to realize these structures on demand. First, the structures were designed and simulated using the FDTD method. The optical mode and loss in the coupling structures were calculated, thereby giving the optimal distance for optical mode coupling between two rib waveguide structures or for optical mode coupling in a microring resonance structure. Simulations results then guided us in the fabrication of the desired ring resonance microstructures using a robust and flexible direct laser writing technique. The entire optical system was thus designed and manufactured on a flat base plate so that it could be easily integrated in optical circuits.

6.
Sci Rep ; 12(1): 13581, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35945425

RESUMEN

α-Thalassemia is a common inherited blood disorder manifested mainly by the deletions of α-globin genes. In geographical areas with high carrier frequencies, screening of α-thalassemia carrier state is therefore of vital importance. This study presents a novel method for identifying female carriers of common α-thalassemia deletions using samples routinely taken for non-invasive prenatal tests for screening of fetal chromosomal aneuploidies. A total of 68,885 Vietnamese pregnant women were recruited and α-thalassemia statuses were determined by gap-PCR, revealing 5344 women (7.76%) carried deletions including αα/--SEA (4.066%), αα/-α3.7 (2.934%), αα/-α4.2 (0.656%), and rare genotypes (0.102%). A two-stage model was built to predict these α-thalassemia deletions from targeted sequencing of the HBA gene cluster on maternal cfDNA. Our method achieved F1-scores of 97.14-99.55% for detecting the three common genotypes and 94.74% for detecting rare genotypes (-α3.7/-α4.2, αα/--THAI, -α3.7/--SEA, -α4.2/--SEA). Additionally, the positive predictive values were 100.00% for αα/αα, 99.29% for αα/--SEA, 94.87% for αα/-α3.7, and 96.51% for αα/-α4.2; and the negative predictive values were 97.63%, 99.99%, 99.99%, and 100.00%, respectively. As NIPT is increasingly adopted for pregnant women, utilizing cfDNA from NIPT to detect maternal carriers of common α-thalassemia deletions will be cost-effective and expand the benefits of NIPT.


Asunto(s)
Ácidos Nucleicos Libres de Células , Talasemia alfa , Talasemia beta , China , Femenino , Genotipo , Humanos , Mutación , Reacción en Cadena de la Polimerasa/métodos , Embarazo , Globinas alfa/genética , Talasemia alfa/diagnóstico , Talasemia alfa/genética , Talasemia beta/genética
7.
Polymers (Basel) ; 15(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36616365

RESUMEN

We report an original method for directly fabricating gold nanoparticles (Au NPs) in a polymer matrix using a thermal treatment technique and theoretically and experimentally investigate their plasmonic properties. The polymeric-metallic nanocomposite samples were first prepared by simply mixing SU-8 resist and Au salt with different concentrations. The Au NPs growth was triggered inside the polymer through a thermal process on a hot plate and in air environment. The Au NPs creation was confirmed by the color of the nanocomposite thin films and by absorption spectra measurements. The Au NPs sizes and distributions were confirmed by transmission electron microscope measurements. It was found that the concentrations of Au salt and the annealing temperatures and durations are all crucial for tuning the Au NPs sizes and distributions, and, thus, their optical properties. We also propose a simulation model for calculations of Au NPs plasmonic properties inside a polymer medium. We realized that Au NPs having large sizes (50 to 100 nm) play an important role in absorption spectra measurements, as compared to the contribution of small NPs (<20 nm), even if the relative amount of big Au NPs is small. This simple, low-cost, and highly reproducible technique allows us to obtain plasmonic NPs within polymer thin films on a large scale, which can be potentially applied to many fields.

8.
Opt Express ; 29(19): 29841-29856, 2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34614721

RESUMEN

We demonstrate a one-step fabrication method to realize desired gold (Au) nanoholes arrays by using a one-photon absorption based direct laser writing technique. Thanks to the optically induced thermal effect of Au material at 532 nm excitation wavelength, the local temperature at the laser focus area can reach as high as 600°C, which induces an evaporation of the Au thin film resulting in a metallic nanohole. By controlling the laser spot movement and exposure time, different two-dimensional Au nanoholes structures with periodicity as small as 500 nm have been demonstrated. This allows obtaining plasmonic nanostructures in a single step without needing the preparation of polymeric template and lift-off process. By this direct fabrication technique, the nanoholes do not have circular shape as the laser focusing spot, due to the non-uniform heat transfer in a no-perfect flat Au film. However, the FDTD simulation results and the experimental measurement of the transmission spectra show that the properties of fabricated plasmonic nanoholes arrays are very close to those of ideal plasmonic nanostructures. Actually, the plasmonic resonance depends strongly on the periodicity of the metallic structures while the heterogeneous form of the holes simply enlarges the resonant peak. Furthermore, it is theoretically demonstrated that the non-perfect circular shape of the Au hole allows amplifying the electromagnetic field of the resonant peak by several times as compared to the case of perfect circular shape. This could be an advantage for application of this fabricated structure in laser and nonlinear optics domains.

9.
Biomed Opt Express ; 12(1): 1-19, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33659069

RESUMEN

We introduce a compact array fluorescence sensor principle that takes advantage of the long luminescence lifetimes of upconversion nanoparticles (UCNPs) to deploy a filter-free, optics-less contact geometry, advantageous for modern biochemical assays of biomolecules, pollutants or cells. Based on technologically mature CMOS chips for ∼10 kHz technical/scientific imaging, we propose a contact geometry between assayed molecules or cells and a CMOS chip that makes use of only a faceplate or direct contact, employing time-window management to reject the 975 nm excitation light of highly efficient UCNPs. The chip surface is intended to implement, in future devices, a resonant waveguide grating (RWG) to enhance excitation efficiency, aiming at the improvement of upconversion luminescence emission intensity of UCNP deposited atop of such an RWG structure. Based on mock-up experiments that assess the actual chip rejection performance, we bracket the photometric figures of merit of such a promising chip principle and predict a limit of detection around 10-100 nanoparticles.

10.
Sci Rep ; 10(1): 4843, 2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-32179841

RESUMEN

Quantum dot (QD) coupling in nanophotonics has been widely studied for various potential applications in quantum technologies. Micro-machining has also attracted substantial research interest due to its capacity to use miniature robotic tools to make precise controlled movements. In this work, we combine fluorescent QDs and magnetic nanoparticles (NPs) to realize multifunctional microrobotic structures and demonstrate the manipulation of a coupled single-photon source (SPS) in 3D space via an external magnetic field. By employing the low one photon absorption (LOPA) direct laser writing (DLW) technique, the fabrication of 2D and 3D magneto-photonic devices containing a single QD is performed on a hybrid material consisting of colloidal CdSe/CdS QDs, magnetite Fe3O4 NPs, and SU-8 photoresist. Two types of devices, contact-free and in-contact structures, are investigated to demonstrate their magnetic and photoradiative responses. The coupled SPS in the devices is driven by the external magnetic field to perform different movements in a 3D fluidic environment. The optical properties of the single QD in the devices are characterized.

11.
Nanoscale Adv ; 1(8): 3225-3231, 2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-36133591

RESUMEN

Colloidal semiconductor quantum dots (QDs) are promising candidates for various applications in electronics and quantum optics. However, they are sensitive and vulnerable to the chemical environment due to their highly dynamic surface with a large portion of exposed atoms. Hence, oxidation and detrimental defects on the nanocrystal (NC) interface dramatically deteriorate their optical as well as electrical properties. In this study, a simple strategy is proposed not only to obtain good preservation of colloidal semiconductor QDs by using a protective polymer matrix but also to provide excellent accessibility to micro-fabrication by optical lithography. A high-quality QD-polymer nanocomposite with mono-dispersion of the NCs is synthesized by incorporating the colloidal CdSe/CdS NCs into an SU-8 photoresist. Our approach shows that the oxidation of the core/shell QDs embedded in the SU-8 resist is completely avoidable. The deterministic insertion of multiple QDs or a single QD into photonic structures is demonstrated. Single photon generation is obtained and well-preserved in the nanocomposite and the polymeric structures.

12.
Polymers (Basel) ; 10(6)2018 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-30966667

RESUMEN

In this paper, silver (Ag) nanoclusters-loaded graphitic carbon nitride (g-C3N4) nanosheets are synthesized and their physical properties as well as photocatalytic activities are systematically investigated by different techniques. The existence of Ag atoms in the form of nanoclusters (NCs) rather than well-crystallized nanoparticles are evidenced by X-ray diffraction patterns, SEM images, and XPS spectra. The deposition of Ag nanoclusters on the surface of g-C3N4 nanosheets affect the crystal structure and slightly reduce the band gap energy of g-C3N4. The sharp decrease of photoluminescence intensity indicates that g-C3N4/Ag heterojunctions successfully prevent the recombination of photo-generated electrons and holes. The photocatalytic activities of as-synthesized photocatalysts are demonstrated through the degradation of rhodamine B (RhB) solutions under Xenon lamp irradiation. It is demonstrated that the photocatalytic activity depends strongly on the molar concentration of Ag⁺ in the starting solution. The g-C3N4/Ag heterojunctions prepared from 0.01 M of Ag⁺ starting solution exhibit the highest photocatalytic efficiency and allow 100% degradation of RhB after being exposed for 60 min under a Xenon lamp irradiation, which is four times faster than that of pure g-C3N4 nanosheets.

13.
Opt Lett ; 42(12): 2382-2385, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28614316

RESUMEN

We demonstrate a direct way to realize arbitrary gold nanostructures via a local dewetting method. This technique was based on the optically induced local thermal effect at the focusing region of a direct laser writing (DLW) system employing a green continuous-wave laser. The local high temperature allowed the creation of gold nano-islands only at the focusing area of the optical system. By moving the focusing spot, this DLW method allowed us to "write" desired two-dimensional gold patterns with a feature size down to sub-lambda. A heat model was also proposed to theoretically explain the localized heating process of the absorbing gold layer. The preliminary results were demonstrated for data storage and color printer applications.

14.
Nanomaterials (Basel) ; 7(5)2017 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-28486409

RESUMEN

We report on the fabrication of desired magneto-photonic devices by a low one-photon absorption (LOPA) direct laser writing (DLW) technique on a photocurable nanocomposite consisting of magnetite ( Fe 3 O 4 ) nanoparticles and a commercial SU-8 photoresist. The magnetic nanocomposite was synthesized by mixing Fe 3 O 4 nanoparticles with different kinds of SU-8 photoresists. We demonstrated that the degree of dispersion of Fe 3 O 4 nanoparticles in the nanocomposite depended on the concentration of Fe 3 O 4 nanoparticles, the viscosity of SU-8 resist, and the mixing time. By tuning these parameters, the most homogeneous magnetic nanocomposite was obtained with a concentration of about 2 wt % of Fe 3 O 4 nanoparticles in SU-8 2005 photoresist for the mixing time of 20 days. The LOPA-based DLW technique was employed to fabricate on demand various magneto-photonic submicrometer structures, which are similar to those obtained without Fe 3 O 4 nanoparticles. The magneto-photonic 2D and 3D structures with sizes as small as 150 nm were created. We demonstrated the strong magnetic field responses of the magneto-photonic nanostructures and their use as micro-actuators when immersed in a liquid solution.

15.
Nanoscale ; 8(6): 3489-95, 2016 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-26795722

RESUMEN

Platinum nanoflowers (PtNFs) were elaborated using the seed-mediated growth technique applied to monodisperse platinum nanoparticles (∼3.0 nm) synthesized by the chemical reduction method. The X-ray diffraction pattern confirmed the formation of face-centered-cubic platinum nanocrystals. We report the Harmonic Light Scattering (HLS) properties of PtNFs for six different diameters (∼7.0; 8.0; 10.0; 14.0; 20.0 and 31.0 nm). From these HLS data we infer, for the first time, large hyperpolarizability ß values of PtNFs. These very high ß values of PtNFs are assigned mainly to highly corrugated surfaces for nanoparticles with irregular shapes.

16.
Opt Lett ; 38(22): 4640-3, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24322094

RESUMEN

With respect to experimental condition, we have investigated the point spread function of a high numerical aperture objective lens, taking into account the absorption effect of the studied material. By using a material possessing an ultralow one-photon absorption (LOPA) coefficient at the excitation wavelength, the light beam can penetrate deeply inside the material and be tightly focused into a subwavelength spot, almost the same as in the absence of material. Combining tight focusing and ultralow absorption conditions, we show that LOPA-based microscopy is thus capable of three-dimensional imaging and fabrication with long penetration depth up to 300 µm. As compared to the commonly used two-photon absorption microscope, the LOPA method allows simplification of the experimental setup and also minimization of the photodamaging or bleaching effect of materials.


Asunto(s)
Aumento de la Imagen/instrumentación , Imagenología Tridimensional/instrumentación , Lentes , Microscopía/instrumentación , Fotometría/instrumentación , Fotones , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Imagenología Tridimensional/métodos
17.
Opt Express ; 21(18): 20964-73, 2013 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-24103969

RESUMEN

We demonstrate a new 3D fabrication method to achieve the same results as those obtained by the two-photon excitation technique, by using a simple one-photon elaboration method in a very low absorption regime. Desirable 2D and 3D submicrometric structures, such as spiral, chiral, and woodpile architectures, with feature size as small as 190 nm have been fabricated, by using just a few milliwatts of a continuous-wave laser at 532 nm and a commercial SU8 photoresist. Different aspects of the direct laser writing based on ultralow one-photon absorption (LOPA) technique are investigated and compared with the TPA technique, showing several advantages, such as simplicity and low cost.

18.
Appl Opt ; 50(23): 4664-70, 2011 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-21833145

RESUMEN

We demonstrate the fabrication of a three-dimensional (3D) polymer quadratic nonlinear (χ(2)) grating structure. By performing layer-by-layer direct laser writing (DLW) and spin-coating approaches, desired photobleached grating patterns were embedded in the guest-host dispersed-red-1/poly(methylmethacrylate) (DR1/PMMA) active layers of an active-passive alternative multilayer structure through photobleaching of DR1 molecules. Polyvinyl-alcohol and SU8 thin films were deposited between DR1/PMMA layers serving as a passive layer to separate DR1/PMMA active layers. After applying the corona electric field poling to the multilayer structure, nonbleached DR1 molecules in the active layers formed polar distribution, and a 3D χ(2) grating structure was obtained. The χ(2) grating structures at different DR1/PMMA nonlinear layers were mapped by laser scanning second harmonic (SH) microscopy, and no cross talk was observed between SH images obtained from neighboring nonlinear layers. The layer-by-layer DLW technique is favorable to fabricating hierarchical 3D polymer nonlinear structures for optoelectronic applications with flexible structural design.

19.
Appl Opt ; 50(4): 579-85, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21283250

RESUMEN

We demonstrate a promising method for fabrication of plastic microlens arrays (MLAs) with a controllable ellipticity and structure, by using the combination of multiple-exposure two-beam interference and plastic replication techniques. Multiple exposures of a two-beam interference pattern with a wavelength of 442 nm into a thick positive photoresist (AZ-4620) were used to form different two-dimensional periodic structures. Thanks to the developing effect of the positive photoresist, fabricated structures consisting of hemielliptical- or hemispherical-shaped concave holes were obtained. By controlling the rotation angle between different exposures, both the shape and structure of the holes varied. By adjusting the dosage ratio between different exposures, the shape of the holes was modified while the structure of the holes was unchanged. The photoresist concave microstructures were then transferred to plastic MLAs by employing replication and embossing techniques. The fabricated MLAs were characterized by a scanning electron microscope and atomic force microscope measurements. We show that the ellipticity of the microlenses can be well controlled from 0 (hemispherical) to 0.96 (hemielliptical) by changing the rotation angle or dosage ratio between the two exposures.

20.
Appl Opt ; 48(13): 2473-9, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19412205

RESUMEN

Microlens arrays (MLAs) were fabricated based on the mass transport effect of SU-8 photoresist by a multiexposure two-beam interference technique. In particular, a direct single-step fabrication process, i.e., without developing, mask, and pattern transferring processes, is demonstrated. The effects of various parameters such as thicknesses, exposure dosage, and angle between two laser beams on MLAs were investigated. Square and hexagonal lattices of microlenses were obtained by controlling rotation angles between different exposures on SU-8 samples. In addition, microlenses with elliptical shape were fabricated by a double exposure at 0 degrees and 60 degrees. Finally, the surface profiles of microlenses in MLAs were characterized by atomic force microscopy.


Asunto(s)
Compuestos Epoxi/química , Interferometría/instrumentación , Lentes , Polímeros/química , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Miniaturización , Refractometría/instrumentación , Dispersión de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...