Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Tissue Res ; 395(3): 261-269, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38253890

RESUMEN

Ras homology enriched in the brain (Rheb) is well established as a critical regulator of cell proliferation and differentiation in response to growth factors and nutrients. However, the role of Rheb1 in limb development remains unknown. Here, we found that Rheb1 was dynamically expressed during the proliferation and differentiation of chondrocytes in the growth plate. Given that Prrx1+ limb-bud-like mesenchymal cells are the source of limb chondrocytes and are essential for endochondral ossification, we conditionally deleted Rheb1 using Prrx1-Cre and found a limb dwarfism in Prrx1-Cre; Rheb1fl/fl mice. Normalized to growth plate height, the conditional knockout (cKO) mice exhibited a significant decrease in column count of proliferative zones which was increased in hypertrophic zones resulting in decreased growth plate size, indicating abnormal endochondral ossification. Interestingly, although Rheb1 deletion profoundly inhibited the transcription factor Sox9 in limb cartilage; levels of runx2 and collagen type 2 were both increased. These novel findings highlight the essential role of Rheb1 in limb growth and indicate a complex regulation of Rheb1 in chondrocyte proliferation and differentiation.


Asunto(s)
Condrogénesis , Placa de Crecimiento , Animales , Ratones , Cartílago , Diferenciación Celular , Condrocitos/metabolismo , Placa de Crecimiento/metabolismo , Osteogénesis/fisiología
2.
Orthop Surg ; 16(1): 183-195, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37933407

RESUMEN

OBJECTIVE: Nowadays, more than 90% of people over 50 years suffer from intervertebral disc degeneration (IDD), but there are exist no ideal drugs. The aim of this study is to identify a new drug for IDD. METHODS: An approved small molecular drug library including 2040 small molecular compounds was used here. We found that taurocholic acid sodium hydrate (NAT) could induce chondrogenesis and osteogenesis in mesenchymal stem cells (MSCs). Then, an in vivo mouse model of IDD was established and the coccygeal discs transcriptome analysis and surface plasmon resonance analysis (SPR) integrated with liquid chromatography-tandem mass spectrometry assay (LC-MS) were performed in this study to study the therapy effect and target proteins of NAT for IDD. Micro-CT was used to evaluate the cancellous bone. The expression of osteogenic (OCN, RNX2), chondrogenic (COL2A1, SOX9), and the target related (ERK1/2, p-ERK1/2) proteins were detected. The alkaline phosphatase staining was performed to estimate osteogenic differentiation. Blood routine and blood biochemistry indexes were analyzed for the safety of NAT. RESULTS: The results showed that NAT could induce chondrogenesis and osteogenesis in MSCs. Further experiments confirmed NAT could ameliorate the secondary osteoporosis and delay the development of IDD in mice. Transcriptome analysis identified 128 common genes and eight Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for NAT. SPR-LC-MS assay detected 57 target proteins for NAT, including MAPK3 (mitogen-activated protein kinase 3), also known as ERK1 (extracellular regulated protein kinase 1). Further verification experiment confirmed that NAT significantly reduced the expression of ERK1/2 phosphorylation. CONCLUSION: NAT would induce chondrogenesis and osteogenesis of MSCs, ameliorate the secondary osteoporosis and delay the progression of IDD in mice by targeting MAPK3.Furthermore, MAPK3, especially the phosphorylation of MAPK3, would be a potential therapeutic target for IDD treatment.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Osteoporosis , Humanos , Ratones , Animales , Degeneración del Disco Intervertebral/tratamiento farmacológico , Proteína Quinasa 3 Activada por Mitógenos , Osteogénesis/genética , Reposicionamiento de Medicamentos , Sodio
3.
Int Immunopharmacol ; 112: 109225, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36095950

RESUMEN

Osteoarthritis (OA) is the most prevalent degenerative whole-joint disease characterized by cartilage degeneration, synovial hyperplasia, osteophyte formation, and subchondral bone sclerosis. Currently there are no disease-modifying treatments available for OA because its etiology and pathogenesis are largely unknown. Here we report that a natural carboxylic polyether ionophore that is used as an anti-tumor drug, salinomycin (SAL), may be a promising therapeutic drug for OA in the future. We found that SAL showed no cytotoxicity on mouse chondrocytes and displayed a protective effect against interleukin-1ß (IL-1ß), in cultured mouse chondrocytes and cartilage explants. Treatment with low SAL concentrations directly upregulated the anabolism factors collagen II and aggrecan, while it inhibited the catabolic factors matrix metalloproteinase-13 (MMP13) and metalloproteinase with thrombospondin motifs-5 (ADAMTS5) to protect against extracellular matrix (ECM) degradation, and also suppressed inflammatory responses in mouse chondrocytes. Furthermore, SAL reduced the severity of OA-associated changes and delayed cartilage destruction, subchondral bone sclerosis, and osteophyte formation in a destabilized medial meniscus (DMM) surgery-induced mouse OA model. Mechanistically, a low SAL concentration induced anabolism and inhibited catabolism in chondrocytes via inhibiting Lrp6 phosphorylation and Wnt/ß-catenin signaling. Our results suggested that SAL may serve as a potential disease-modifying therapeutic against OA pathogenesis.


Asunto(s)
Osteoartritis , Osteofito , Vía de Señalización Wnt , Animales , Ratones , Agrecanos/metabolismo , beta Catenina/metabolismo , Cartílago Articular/patología , Células Cultivadas , Condrocitos , Modelos Animales de Enfermedad , Interleucina-1beta/metabolismo , Ionóforos/metabolismo , Ionóforos/farmacología , Ionóforos/uso terapéutico , Metaloproteinasa 13 de la Matriz/metabolismo , Meniscos Tibiales/patología , Osteoartritis/metabolismo , Osteoartritis/patología , Osteofito/metabolismo , Osteofito/patología , Esclerosis/metabolismo , Esclerosis/patología , Trombospondinas/metabolismo , Trombospondinas/farmacología , Trombospondinas/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...