Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 13(6)2023 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-36985918

RESUMEN

Gold nanorods (GNRs) coated with silica shells are excellent photothermal agents with high surface functionality and biocompatibility. Understanding the correlation of the coating process with both structure and property of silica-coated GNRs is crucial to their optimizing preparation and performance, as well as tailoring potential applications. Herein, we report a machine learning (ML) prediction of coating silica on GNR with various preparation parameters. A total of 306 sets of silica-coated GNRs altogether were prepared via a sol-gel method, and their structures were characterized to extract a dataset available for eight ML algorithms. Among these algorithms, the eXtreme gradient boosting (XGboost) classification model affords the highest prediction accuracy of over 91%. The derived feature importance scores and relevant decision trees are employed to address the optimal process to prepare well-structured silica-coated GNRs. The high-throughput predictions have been adopted to identify optimal process parameters for the successful preparation of dumbbell-structured silica-coated GNRs, which possess a superior performance to a conventional cylindrical core-shell counterpart. The dumbbell silica-coated GNRs demonstrate an efficient enhanced photothermal performance in vivo and in vitro, validated by both experiments and time domain finite difference calculations. This study epitomizes the potential of ML algorithms combined with experiments in predicting, optimizing, and accelerating the preparation of core-shell inorganic materials and can be extended to other nanomaterial research.

2.
Opt Express ; 30(18): 32459-32473, 2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36242307

RESUMEN

This study develops a multifunctional molecular optical nanoprobe (SiO2@Gd2O3: Yb3+/Er3+/Li+@Ce6/MC540) with a unique core-satellite form. The rare-earth doped nanodots with good crystallinity are uniformly embedded on the surface of a hydrophilic silica core, and the nanoprobe can emit near-infrared-IIb (NIR-IIb) luminescence for imaging as well as visible light that perfectly matches the absorption bands of two included photosensitizers under 980 nm irradiation. The optimal NIR-IIb emission and upconversion efficiency are attainable via regulating the doping ratios of Yb3+, Er3+ and Li+ ions. The relevant energy transfer mechanism was addressed theoretically that underpins rare-earth photoluminescence where energy back-transfer and cross relaxation processes play pivotal roles. The nanoprobe can achieve an excellent dual-drive photodynamic treatment performance, verified by singlet oxygen detections and live-dead cells imaging assays, with a synergistic effect. And a brightest NIR-IIb imaging was attained in tumoral site of mouse. The nanoprobe has a high potential to serve as a new type of optical theranostic agent for tumor.


Asunto(s)
Metales de Tierras Raras , Neoplasias , Animales , Ratones , Fármacos Fotosensibilizantes/farmacología , Medicina de Precisión , Dióxido de Silicio , Oxígeno Singlete
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...