Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Mol Neurosci ; 16: 1079529, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37575969

RESUMEN

Introduction: The pathogenic gene CDH23 plays a pivotal role in tip links, which is indispensable for mechanoelectrical transduction in the hair cells. However, the underlying molecular mechanism and signal regulatory networks that influence deafness is still largely unknown. Methods: In this study, a congenital deafness family, whole exome sequencing revealed a new mutation in the pathogenic gene CDH23, subsequently; the mutation has been validated using Sanger sequencing method. Then CRISPR/Cas9 technology was employed to knockout zebrafish cdh23 gene. Startle response experiment was used to compare with wide-type, the response to sound stimulation between wide-type and cdh23-/-. To further illustrate the molecular mechanisms underlying congenital deafness, comparative transcriptomic profiling and multiple bioinformatics analyses were performed. Results: The YO-PRO-1 assay result showed that in cdh23 deficient embryos, the YO-PRO-1 signal in inner ear and lateral line neuromast hair cells were completely lost. Startle response experiment showed that compared with wide-type, the response to sound stimulation decreased significantly in cdh23 mutant larvae. Comparative transcriptomic showed that the candidate genes such as atp1b2b and myof could affect hearing by regulating ATP production and purine metabolism in a synergetic way with cdh23. RT-qPCR results further confirmed the transcriptomics results. Further compensatory experiment showed that ATP treated cdh23-/- embryos can partially recover the mutant phenotype. Conclusion: In conclusion, our study may shed light on deciphering the principal mechanism and provide a potential therapeutic method for congenital hearing loss under the condition of CDH23 mutation.

2.
Biochem Biophys Res Commun ; 479(4): 703-707, 2016 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-27693694

RESUMEN

The TPRN gene encodes taperin, which is prominently present at the taper region of hair cell stereocilia. Mutations in TPRN have been reported to cause autosomal recessive nonsyndromic deafness 79(DFNB 79). To investigate the role of taperin in pathogenesis of hearing loss, we generated TPRN knockout mice using TALEN technique. Sanger sequencing confirmed an 11 bp deletion at nucleotide 177-187 in exon 1 of TPRN, which results in a truncated form of taperin protein. Heterozygous TPRN+/- mice showed apparently normal auditory phenotypes to their wide-type (WT) littermates. Homozygous TPRN-/- mice exhibited progressive sensorineural hearing loss as reflected by auditory brainstem response to both click and tone burst stimuli at postnatal days 15 (P15), 30 (P30), and 60 (P60). Alex Fluor-594 phalloidin labeling showed no obvious difference in hair cell numbers in the cochlea between TPRN-/- mice and WT mice under light microscope. However, scanning electronic microscopy revealed progressive degeneration of inner hair cell stereocilia, from apparently normal at postnatal days 3 (P3) to scattered absence at P15 and further to substantial loss at P30. The outer hair cell stereocilia also showed progressive degeneration, though much less severe, Collectively, we conclude that taperin plays an important role in maintenance of hair cell stereocilia. Establishment of TPRN knockout mice enables further investigation into the function of this gene.


Asunto(s)
Sordera/genética , Sordera/patología , Células Ciliadas Auditivas/ultraestructura , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/patología , Proteínas/fisiología , Estereocilios/patología , Animales , Células Ciliadas Auditivas/metabolismo , Heterocigoto , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Rastreo , Proteínas/genética , Eliminación de Secuencia , Estereocilios/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...