Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mov Disord Clin Pract ; 11(5): 496-503, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38419568

RESUMEN

BACKGROUND: Fatigue is a prevalent and debilitating symptom in neurological disorders, including spinocerebellar ataxias (SCAs). However, the risk factors of fatigue in the SCAs as well as its impact have not been well investigated. OBJECTIVES: To study the prevalence of fatigue in SCAs, the factors contributing to fatigue, and the influence of fatigue on quality of life. METHODS: Fatigue was assessed in 418 participants with SCA1, SCA2, SCA3, and SCA6 from the Clinical Research Consortium for the Study of Cerebellar Ataxia using the Fatigue Severity Scale. We conducted multi-variable linear regression models to examine the factors contributing to fatigue as well as the association between fatigue and quality of life. RESULTS: Fatigue was most prevalent in SCA3 (52.6%), followed by SCA1 (36.7%), SCA6 (35.7%), and SCA2 (35.6%). SCA cases with fatigue had more severe ataxia and worse depressive symptoms. In SCA3, those with fatigue had a longer disease duration and longer pathological CAG repeat numbers. In multi-variable models, depressive symptoms, but not ataxia severity, were associated with more severe fatigue. Fatigue, independent of ataxia and depression, contributed to worse quality of life in SCA3 and SCA6 at baseline, and fatigue continued affecting quality of life throughout the disease course in all types of SCA. CONCLUSIONS: Fatigue is a common symptom in SCAs and is closely related to depression. Fatigue significantly impacts patients' quality of life. Therefore, screening for fatigue should be considered a part of standard clinical care for SCAs.


Asunto(s)
Fatiga , Calidad de Vida , Ataxias Espinocerebelosas , Humanos , Calidad de Vida/psicología , Ataxias Espinocerebelosas/psicología , Ataxias Espinocerebelosas/complicaciones , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/epidemiología , Masculino , Fatiga/psicología , Fatiga/epidemiología , Femenino , Persona de Mediana Edad , Adulto , Anciano , Índice de Severidad de la Enfermedad , Prevalencia , Depresión/epidemiología , Depresión/psicología
2.
Ann Clin Transl Neurol ; 11(2): 377-388, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38098226

RESUMEN

OBJECTIVE: Postmortem examination of the essential tremor cerebellum has revealed a variety of pathological changes centered in and around Purkinje cells. Studies have predominantly focused on cerebellar neuronal connections. Bergmann glial morphology has not yet been studied in essential tremor. Among their many roles, Bergmann glia in the cerebellar cortex ensheath Purkinje cell synapses and provide neuroprotection. Specifically, the complex radial processes and lateral appendages of Bergmann glia are structural domains that modulate Purkinje cell synaptic transmission. In this study, we investigate whether Bergmann glia morphology is altered in the essential tremor cerebellum. METHODS: We applied the Golgi-Kopsch method and used computerized three-dimensional cell reconstruction to visualize Bergmann glia in the postmortem cerebellum of 34 cases and 17 controls. We quantified morphology of terminal structures (number of terminations and lateral appendage density) and morphology of radial processes (total process length, branch length, branch order, and branch volume) in each glial cell. We quantified number of branches and volume as well. RESULTS: Essential tremor cases had a 31.9% decrease in process terminations and a 35.7% decrease in lateral appendage density in Bergmann glia. Total process length and branch length did not differ between essential tremor cases and controls. We found also a reduction in number of secondary and tertiary branches and tertiary branches volume. INTERPRETATION: These findings suggest that Bergmann glia in essential tremor cases have more alterations in their terminal structures, with a relative preservation of radial processes, and highlight a potential role for these astrocytes in the disease pathophysiology.


Asunto(s)
Temblor Esencial , Humanos , Neuroglía/fisiología , Células de Purkinje , Astrocitos , Cerebelo
3.
Parkinsonism Relat Disord ; 107: 105252, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36577359

RESUMEN

INTRODUCTION: People with cerebellar ataxia (CA) can develop impulsive and compulsive behaviors that significantly affect their and their family's quality of life. To further assess the decision-making process associated with these behaviors, we used the Iowa Gambling Task (IGT) to study people with CA. METHODS: Sixty individuals with CA and thirty age-matched controls were enrolled in the study to complete the IGT. No participants had a prior or comorbid neurologic or psychiatric disorder associated with impulsivity. IGT performance in each of the five 20-trial blocks was compared between groups and the progression of participants' performance was assessed with simple linear regression models. Subgroup analyses were performed with genetic and non-genetic CA cases. RESULTS: CA cases obtained significantly lower IGT total scores than controls (-5.30 ± 37.53 vs. 21.30 ± 37.37, p = 0.004). In addition, those with CA made riskier decisions throughout the task compared to controls. Although both CA and controls learned to make decisions with more favorable outcomes over the course of completing the IGT, CA participants never matched the controls' performance. IGT performance did not correlate with ataxia severity or depressive symptoms. CONCLUSION: The IGT may capture a unique behavioral symptom of CA. Future studies may help elucidate the mechanisms underlying impaired decision-making in CA and further the understanding of a broader spectrum of cerebellar cognitive affective syndrome.


Asunto(s)
Ataxia Cerebelosa , Juego de Azar , Humanos , Juego de Azar/psicología , Ataxia Cerebelosa/complicaciones , Calidad de Vida , Toma de Decisiones , Conducta Impulsiva , Pruebas Neuropsicológicas
4.
Ann Clin Transl Neurol ; 10(1): 48-57, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36401598

RESUMEN

OBJECTIVE: The cerebellum has been identified as the key brain region that modulates reward processing in animal models. Consistently, we recently found that people with cerebellar ataxia have impulsive and compulsive behaviors (ICBs), the main symptoms related to abnormal reward processing. Due to the lack of a validated scale to quantitatively measure ICBs in cerebellar disorders, we aim to develop and validate a new scale, Cerebellar Impulsivity-Compulsivity Assessment (CIA). METHODS: We recruited 62 cerebellar ataxia cases, categorized into those with ICBs and those without. We developed a preliminary version of CIA, containing 17 questions. We studied the internal consistency, test-retest reliability, and inter-rater reliability to formulate the final version of CIA, which constitutes only 10 questions. The receiver operating characteristic curve (ROC) was generated to assess the sensitivity and specificity of CIA. RESULTS: Cerebellar ataxia cases with ICBs have threefold higher total preliminary CIA scores than those without ICBs (12.06 ± 5.96 vs. 4.68 ± 3.50, p = 0.038). Cronbach's alpha revealed good internal consistency across all items (α > 0.70). By performing the test-retest reliability and inter-rater reliability on the preliminary version of CIA, we excluded seven questions (r < 0.70) and generated the final version of CIA. Based on the ROC, a score of 8.0 in CIA was chosen as the cut-off for ICBs in individuals with cerebellar ataxia with 81% sensitivity and 81% specificity. INTERPRETATION: CIA is a novel tool to assess ICBs in cerebellar ataxia and broaden our understanding of the cerebellum-related cognitive and behavioral symptoms.


Asunto(s)
Ataxia Cerebelosa , Enfermedades Cerebelosas , Humanos , Ataxia Cerebelosa/diagnóstico , Reproducibilidad de los Resultados , Cerebelo , Conducta Impulsiva
5.
J Neurol Sci ; 415: 116878, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32454319

RESUMEN

BACKGROUND: Dysphagia is a common symptom and may be a cause of death in patients with spinocerebellar ataxias (SCAs). However, little is known about at which disease stage dysphagia becomes clinically relevant. Therefore, our study aims to investigate the prevalence of dysphagia in different disease stages of SCA 1, 2, 3 and 6. METHODS: We studied 237 genetically confirmed patients with SCA 1, 2, 3, 6 from the Clinical Research Consortium for SCAs and investigated the prevalence of self-reported dysphagia and the association between dysphagia and other clinical characteristics. We further stratified ataxia severity and studied the prevalence of dysphagia at each disease stage. RESULTS: Dysphagia was present in 59.9% of SCA patients. Patients with dysphagia had a longer disease duration and more severe ataxia than patients without dysphagia (patients with dysphagia vs. without dysphagia, disease duration (years): 14.51 ± 8.91 vs. 11.22 ± 7.82, p = .001, scale for the assessment and rating of ataxia [SARA]: 17.90 ± 7.74 vs. 13.04 ± 7.51, p = .000). Dysphagia was most common in SCA1, followed by SCA3, SCA 6, and SCA 2. Dysphagia in SCA1 and 3 was associated robustly with ataxia severity, whereas this association was less obvious in SCA2 and 6, demonstrating genotype-specific clinical variation. CONCLUSION: Dysphagia is a common clinical symptom in SCAs, especially in the severe disease stage. Understanding dysphagia in SCA patients can improve the care of these patients and advance knowledge on the roles of the cerebellum and brainstem control in swallowing.


Asunto(s)
Trastornos de Deglución , Ataxias Espinocerebelosas , Tronco Encefálico , Trastornos de Deglución/epidemiología , Trastornos de Deglución/etiología , Humanos , Ataxias Espinocerebelosas/complicaciones , Ataxias Espinocerebelosas/epidemiología , Ataxias Espinocerebelosas/genética
6.
Hum Mol Genet ; 29(1): 117-131, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31696233

RESUMEN

Spinocerebellar ataxia type 1 (SCA1) is a fatal neurodegenerative disease caused by abnormal expansion of glutamine (Q) encoding CAG repeats in the gene Ataxin-1 (ATXN1). Although motor and balance deficits are the core symptoms of SCA1, cognitive decline is also commonly observed in patients. While mutant ATXN1 is expressed throughout the brain, pathological findings reveal severe atrophy of cerebellar cortex in SCA1 patients. The cerebellum has recently been implicated in diverse cognitive functions, yet to what extent cerebellar neurodegeneration contributes to cognitive alterations in SCA1 remains poorly understood. Much of our understanding of the mechanisms underlying pathogenesis of motor symptoms in SCA1 comes from mouse models. Reasoning that mouse models could similarly offer important insights into the mechanisms of cognitive alterations in SCA1, we tested cognition in several mouse lines using Barnes maze and fear conditioning. We confirmed cognitive deficits in Atxn1154Q/2Q knock-in mice with brain-wide expression of mutant ATXN1 and in ATXN1 null mice. We found that shorter polyQ length and haploinsufficiency of ATXN1 do not cause significant cognitive deficits. Finally, ATXN1[82Q ] transgenic mice-with cerebellum limited expression of mutant ATXN1-demonstrated milder impairment in most aspects of cognition compared to Atxn1154Q/2Q mice, supporting the concept that cognitive deficits in SCA1 arise from a combination of cerebellar and extra-cerebellar dysfunctions.


Asunto(s)
Ataxina-1/metabolismo , Cerebelo/metabolismo , Disfunción Cognitiva/metabolismo , Animales , Ataxina-1/genética , Ataxina-3/genética , Ataxina-3/metabolismo , Cognición/fisiología , Disfunción Cognitiva/genética , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/metabolismo
7.
Cerebellum ; 18(3): 519-526, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30830673

RESUMEN

Cerebellar degenerative pathology has been identified in tremor patients; however, how the degenerative pathology could contribute to tremor remains unclear. If the cerebellar degenerative pathology can directly drive tremor, one would hypothesize that tremor is likely to occur in the diseases of cerebellar ataxia and follows the disease progression in such disorders. To further test this hypothesis, we studied the occurrence of tremor in different disease stages of classical cerebellar degenerative disorders: spinocerebellar ataxias (SCAs). We further separately analyzed postural tremor and rest tremor, two forms of tremor that both involve the cerebellum. We also explored tremor in different subtypes of SCAs. We found that 18.1% of SCA patients have tremor. Interestingly, SCA patients with tremor have worse ataxia than those without tremor. When stratifying patients into mild, moderate, and severe disease stages according to the severity of ataxia, moderate and severe SCA patients more commonly have tremor than those with mild ataxia, the effect most prominently observed in postural tremor of SCA3 and SCA6 patients. Finally, tremor can independently contribute to worse functional status in SCA2 patients, even after adjusting for ataxia severity. Tremor is more likely to occur in the severe stage of cerebellar degeneration when compared to mild stages. Our results partially support the cerebellar degenerative model of tremor.


Asunto(s)
Cerebelo/patología , Ataxias Espinocerebelosas/complicaciones , Ataxias Espinocerebelosas/patología , Temblor/etiología , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Temblor/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...