Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
J Colloid Interface Sci ; 671: 477-485, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38815383

RESUMEN

"Polymer-in-ceramic" (PIC) electrolytes are widely investigated for all-solid-state batteries (ASSBs) due to their good thermal stability and mechanical performance. However, achieving fast and diversified lithium-ion transport inside the PIC electrolyte and uniform Li+ deposition at the electrolyte/Li anode interface simultaneously remains a challenge. Besides, the effect of ceramic particle size on Li+ transport and Li anodic compatibility is still unclear, which is essential for revealing the enhanced mechanism of the performance for PIC electrolytes. Herein, PIC with moderate ceramic size and contents are prepared and studied to strike a balance between ionic conductivity and anodic compatibility. Through moderate filler-filler interfacial impedance and appropriate surface roughness, a particle size of 17 µm is optimized to facilitate homogeneous Li+ flux on anode and enhance Li+ conductivity of the electrolyte. The PIC electrolyte with ceramic particle size of 17 µm achieves a high lithium ion transference number (0.74) and an ionic conductivity of 4.11 × 10-4 S cm-1 at 60 °C. The Li/PIC/Li symmetric cell can stably cycle for 2800 h at 0.2 mA cm-2 with 0.2 mAh cm-2. Additionally, the Li/PIC/LiFePO4 cell also delivers a superior cycling performance at 0.5C, a high capacity retention of 93.28% after 100 cycles and 83.17% after 200 cycles, respectively.

2.
Small ; : e2402086, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607305

RESUMEN

Lithophobic Li2CO3/LiOH contaminants and high-resistance lithium-deficient phases produced from the exposure of garnet electrolyte to air leads to a decrease in electrolyte ion transfer ability. Additionally, garnet electrolyte grain boundaries (GBs) with narrow bandgap and high electron conductivity are potential channels for current leakage, which accelerate Li dendrites generation, ultimately leading to short-circuiting of all-solid-state batteries (ASSBs). Herein, a stably lithiophilic Li2ZO3 is in situ constructed at garnet electrolyte surface and GBs by interfacial modification with ZrO2 and Li2CO3 (Z+C) co-sintering to eliminate the detrimental contaminants and lithium-deficient phases. The Li2ZO3 formed on the modified electrolyte (LLZTO-(Z+C)) surface effectively improves the interfacial compatibility and air stability of the electrolyte. Li2ZO3 formed at GBs broadens the energy bandgaps of LLZTO-(Z+C) and significantly inhibits lithium dendrite generation. More Li+ transport paths found in LLZTO-Z+C by first-principles calculations increase Li+ conductivity from 1.04×10-4 to 7.45×10-4 S cm-1. Eventually, the Li|LLZTO-(Z+C)|Li symmetric cell maintains stable cycling for over 2000 h at 0.8 mA cm-2. The capacity retention of LiFePO4|LLZTO-(Z+C)|Li battery retains 70.5% after 5800 ultralong cycles at 4 C. This work provides a potential solution to simultaneously enhance the air stability and modulate chemical characteristics of the garnet electrolyte surface and GBs for ASSBs.

3.
Small ; : e2401132, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38552226

RESUMEN

Li-rich layered oxides cathodes (LLOs) have prevailed as the promising high-energy-density cathode materials due to their distinctive anionic redox chemistry. However, uncontrollable anionic redox process usually leads to structural deterioration and electrochemical degradation. Herein, a Mo/Cl co-doping strategy is proposed to regulate the relative position of energy band for modulating the anionic redox chemistry and strengthening the structural stability of Co-free Li1.16Mn0.56Ni0.28O2 cathodes. The incorporation of Mo with high d state orbit and Cl with low electronegativity can narrow the band energy gap between bonding and antibonding bands via increasing the filled lower-Hubbard band (LHB) and decreasing the non-bonding O 2p energy bands, promoting the anionic redox reversibility. In addition, strong covalent Mo─O and Mn─Cl bonding further increases the covalency of Mn─O band to further stabilize the O2 n- species and enhance the reversible distortion of MnO6 octahedron. The strengthening electronic conductivity, together with the epitaxial structure Li2MoO4 facilitates the fast Li+ kinetics. As a result, the dual doping material exhibits enhanced anionic redox reversibility and suppressed oxygen release with increased cyclic stability and excellent rate performance. This strategy provides some guidance to design high-energy-density LLOs with desirable anionic redox reversibility and stable crystal structure via band structure engineering.

4.
J Colloid Interface Sci ; 662: 1086-1095, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38365515

RESUMEN

Lithium-sulfur (Li-S) batteries are a strong contender for the new-generation battery system to meet the growing energy demand due to their significantly high energy density (2600 Wh/kg) and cost-effectiveness. However, the practical operating conditions yield an initial capacity of less than 80 % of the theoretical capacity, resulting in a limited lifespan and hindering broader application. What's worse, current mechanism, especially the evolution process of sulfides for the initial capacity degradation is not clear due to the practical difficulties of effective separation and detection of sulfur-containing components. Herein, we have developed an instrumental analysis method enabling graded leaching and quantitative determination of sulfur-containing components. This technology achieves a detection precision surpassing 99.11 %, addressing the inherent deficiency in calculating sulfur-containing components using the decrement method. Applying this method reveals that the presence of lithium polysulfides in the electrolyte (26.34 wt%) after discharging is the primary factor causing insufficient capacity utilization in Li-S batteries. This work not only demonstrates the unique behavior of Li-S batteries at high sulfur loading but also provides a systematic evaluation method to guide further research on high-energy-density batteries, and provides theoretical and technical support to promote the development of high-energy, long-life Li-S batteries.

5.
J Knee Surg ; 37(6): 426-435, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37722418

RESUMEN

Anterior cruciate ligament (ACL) rupture often presents with a tear of the posterior horn of the lateral meniscus. There is no clear preference between ACL reconstruction with suture and resection of the meniscus. We aimed to compare the clinical efficacy of ACL reconstruction with suture versus resection in patients presenting with arthroscopic ACL rupture and radial complete tear of the posterior corner of the lateral meniscus. We retrospectively analyzed 157 patients with ACL rupture and complete radial tear of the posterior horn of the lateral meniscus. Between May 2010 and April 2015, 86 of 157 patients underwent ACL reconstruction and meniscus suture (study group, 54.78%) and 71 of 157 patients underwent ACL reconstruction and meniscus resection (control group, 45.22%) in our department. All patients were monitored over the 12 to 72-month follow-up period. The primary evaluation indices were the Lysholm scores, the International Knee Documentation Committee (IKDC) scores, pivot shift test, the Barret criteria, and magnetic resonance imaging (MRI) findings of meniscal healing. The majority of 157 patients were relatively young men (29.64 ± 7.79 years) with low body mass index (BMI) (23.79 ± 2.74). The postoperative Lysholm and IKDC scores of the two groups were significantly improved over the corresponding preoperative scores (p < 0.05). The clinical results and excellent and good rates were significantly better for the study group than for the control group (both, p < 0.05). MRI showed that the meniscal healed rate of the study group was 96.51%. There was no significant difference in BMI between subgroups for any functional outcome. For patients with ACL rupture and complete radial tear of the posterior horn of the lateral meniscus, ACL reconstruction and both simultaneous suture and resection of the posterior horn of the lateral meniscus were found to be safe and effective. There was no association between outcomes and BMI. However, the former was associated with a superior long-term clinical effect and may restore the integrity of the meniscus and is particularly recommended for young patients.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Ligamento Cruzado Anterior , Masculino , Humanos , Ligamento Cruzado Anterior/cirugía , Meniscos Tibiales/diagnóstico por imagen , Meniscos Tibiales/cirugía , Estudios Retrospectivos , Lesiones del Ligamento Cruzado Anterior/cirugía , Rotura/cirugía , Suturas
6.
ACS Nano ; 18(2): 1714-1723, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38156873

RESUMEN

Superior sodium-ion batteries (SIBs) greatly need cathode materials with higher capacity and better durability. Herein, the anion group substitution strategy is proposed to design a cathode material with extraordinary Na+ storage performance, NASICON-Na4Fe3(PO4)1.9(SiO4)0.1P2O7 (NFPP-Si0.1). The experimental and theoretical research revealed that modification in the local structure by anion substitution significantly boosts the ionic/electronic transfer kinetics via optimizing the electronic conductivity and reducing the Na+ diffusion energy barrier. Furthermore, the SiO44- substitution generates a slight expansion of the crystal lattice to broaden the Na+ diffusion channel. Specifically, the custom-designed NFPP-Si0.1 could deliver a high rate capability of 77.6 mAh g-1 at constant 50 C charge-discharge and excellent recyclability of 79.4% retention rate after 7000 cycles at 10 C. Besides, it also possesses outstanding low temperature reversible capacity of 95.5 mAh g-1 at 0.1 C and long-term cyclability of 93.6% capacity retention after 1000 cycles at 5 C in -10 °C. This strategy of heterogeneous and isostructural anion group substitution provides a method for unlocking high-rate and long-life-span mixed polyanionic cathodes.

7.
J Colloid Interface Sci ; 658: 976-985, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38157621

RESUMEN

Sacrificial cathode additives have emerged as a tempting strategy to compensate the initial capacity loss (ICL) in Li-ion batteries (LIBs) manufacturing. However, the utilization of sacrificial cathode additives inevitably brings residuals, side reactions, and negative impacts in which relevant researches are still in the early stage. In this study, we conduct a systematic investigation on the effects of employing a nickel-based sacrificial additive, Li2Cu0.1Ni0.9O2 (LCNO), and propose a feasible strategy to achieve advantageous surface reconstruction on LCNO. Specifically, we build a Li5AlO4 (LAO) coating layer on the LCNO through dry ball milling and annealing treatment. This process not only consumes surface residual lithium compounds on LCNO but also demonstrates minimal detrimental effects on its performance. The surface reconstructed LCNO (SR-LCNO) reveals mitigated gas generation and suppressed structure degradation under high working voltage (>4.1 V), thereby causing negligible negative effects on the cycling capability and rate performance of commercial cathode materials. The full cells containing SR-LCNO deliver significantly improved electrochemical properties, with no observed exacerbation of side reactions. This work awakes the awareness of the prudent utilization of sacrificial cathode additives and provides an effective strategy for harmless pre-lithiation via surface reconstructed sacrificial cathode additives.

8.
ACS Appl Mater Interfaces ; 15(42): 49107-49115, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37824189

RESUMEN

Sodium (Na) metal is an ideal anode for Na-based batteries because of its high specific capacity and low potential. However, interface issues such as side reactions with the electrolyte and uneven deposition severely hinder its practical application. Here, we report a zinc phthalocyanine (ZnPc) electrolyte additive with a planar molecular structure that can form a dense molecular layer when tightly adsorbed on the Na metal anode surface. Such a planar molecular layer can suppress side reactions between the anode and the electrolyte as well as homogenize Na+ flux to reduce dendrite growth. As a result, the molecular isolation interface formed by ZnPc adsorption on the surface of the Na metal anode enhances the interface stability and the cycling performance of the Na metal anode, with the average Coulombic efficiency of the half-cell of 99.95% after 350 stable cycles at 1 mA cm-2 for 1 mAh cm-2. Moreover, the assembled Na||Na3V2(PO4)3 full-cell with this additive delivers excellent stability over 120 cycles, proving the effectiveness of the ZnPc additive in practical application.

9.
Chem Sci ; 14(32): 8662-8671, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37592989

RESUMEN

High-voltage cathodes with high power and stable cyclability are needed for high-performance sodium-ion batteries. However, the low kinetics and inferior capacity retention from structural instability impede the development of Mn-rich phosphate cathodes. Here, we propose light-weight fluorine (F) doping strategy to decrease the energy gap to 0.22 eV from 1.52 eV and trigger a "Mn-locking" effect-to strengthen the adjacent chemical bonding around Mn as confirmed by density functional theory calculations, which ensure the optimized Mn ligand framework, suppressed Mn dissolution, improved structural stability and enhanced electronic conductivity. The combination of in situ and ex situ techniques determine that the F dopant has no influence on the Na+ storage mechanisms. As a result, an outstanding rate performance up to 40C and an improved cycling stability (1000 cycles at 20C) are achieved. This work presents an effective and widely available light-weight anion doping strategy for high-performance polyanionic cathodes.

10.
Small ; 19(41): e2303539, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37287389

RESUMEN

On account of high capacity and high voltage resulting from anionic redox, Li-rich layered oxides (LLOs) have become the most promising cathode candidate for the next-generation high-energy-density lithium-ion batteries (LIBs). Unfortunately, the participation of oxygen anion in charge compensation causes lattice oxygen evolution and accompanying structural degradation, voltage decay, capacity attenuation, low initial columbic efficiency, poor kinetics, and other problems. To resolve these challenges, a rational structural design strategy from surface to bulk by a facile pretreatment method for LLOs is provided to stabilize oxygen redox. On the surface, an integrated structure is constructed to suppress oxygen release, electrolyte attack, and consequent transition metals dissolution, accelerate lithium ions transport on the cathode-electrolyte interface, and alleviate the undesired phase transformation. While in the bulk, B doping into Li and Mn layer tetrahedron is introduced to increase the formation energy of O vacancy and decrease the lithium ions immigration barrier energy, bringing about the high stability of surrounding lattice oxygen and outstanding ions transport ability. Benefiting from the specific structure, the designed material with the enhanced structural integrity and stabilized anionic redox performs an excellent electrochemical performance and fast-charging property..

11.
ACS Appl Mater Interfaces ; 15(19): 23136-23145, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37141507

RESUMEN

A flame retardant gel electrolyte (FRGE) is deemed as one of the most promising electrolytes to relieve the problems of safety hazards and interfacial incompatibility of Li metal batteries. Herein, a novel solvent triethyl 2-fluoro-2-phosphonoacetate (TFPA) with outstanding flame retardancy is introduced in the polymer skeleton synthesized by in situ polymerization of the monomer polyethylene glycol dimethacrylate (PEGDMA) and the cross-linker pentaerythritol tetraacrylate (PETEA). The FRGE exhibits superb interfacial compatibility with Li metal anodes and inhibits uncontrolled Li dendrite growth. This can be ascribed to the restriction of free phosphate molecules by the polymer skeleton, thus realizing a stable cycling performance over 500 h at 1 mA cm-2 and 1 mAh cm-2 in the Li||Li symmetric cell. In addition, the high ionic conductivity (3.15 mS cm-1) and Li+ transference number (0.47) of the FRGE further enhance the electrochemical performance of the correspondent battery. As a result, the LiFePO4|FRGE|Li cell exhibits excellent long-term cycling life with a capacity retention of 94.6% after 700 cycles. This work points to a new pathway for the practical development of high-safety and high-energy-density Li metal-based batteries.

12.
Small ; 19(37): e2302609, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37140083

RESUMEN

Fe-based mixed phosphate cathodes for Na-ion batteries usually possess weak rate capacity and cycle stability challenges resulting from sluggish diffusion kinetics and poor conductivity under the relatively low preparation temperature. Here, the excellent sodium storage capability of this system is obtained by introducing the high-entropy doping to enhance the electronic and ionic conductivity. As designed high-entropy doping Na4 Fe2.85 (Ni,Co,Mn,Cu,Mg)0.03 (PO4 )2 P2 O7 (NFPP-HE) cathode can release 122 mAh g-1 at 0.1 C, even 85 mAh g-1 at ultrahigh rate of 50 C, and keep a high retention of 82.3% after 1500 cycles at 10 C. Besides, the cathode also exhibits outstanding fast charge capacity in terms of the cyclability and capacity with 105 mAh g-1 at 5 C/1 C, corresponding 94.3% retention after 500 cycles. The combination of in situ X-ray diffraction, density functional theory, conductive-atomic force microscopy, and galvanostatic intermittent titration technique tests reveal that the reversible structure evolution with optimized Na+ migration path and energy barrier boost the Na+ kinetics and improve the interfacial electronic transfer, thus improving performance.

13.
Angew Chem Int Ed Engl ; 62(26): e202217815, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-36988032

RESUMEN

The inferior activity and stability of non-noble metal-based electrocatalysts for oxygen evolution reaction (OER) seriously limit their practical applications in various electrochemical energy conversion systems. Here we report, a drastic nonequilibrium precipitation approach to construct a highly disordered crystal structure of layered double hydroxides as a model OER catalyst. The unconventional crystal structure contains high-density cationic defects coupled with a local alkaline-enriched environment, enabling ultrafast diffusion of OH- ions and thus avoiding the formation of a local acidic environment and dissolution of active sites during OER. An integrated experimental and theoretical study reveals that high-density cationic defects, especially di-cationic and multi-cationic defects, serve as highly active and durable catalytic sites. This work showcases a promising strategy of crystal structure engineering to construct robust active sites for high-performance oxygen evolution in an alkaline solution.


Asunto(s)
Oxígeno , Agua , Cationes , Oxidación-Reducción , Difusión
14.
ACS Appl Mater Interfaces ; 15(13): 17386-17395, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36944580

RESUMEN

The diversified design of hybrid artificial layers is a promising method for suppressing the Li dendrite growth and maintaining high Colombic efficiency of lithium (Li) metal anode. Previously, various kinds of organic/inorganic hybrid artificial layers were constructed on the Li metal anode and possessed a positive effect on electrochemical performance. However, the tunable synthesis of artificial layers to continuously regulate the Li diffusion behavior remains a challenge. In this work, the Li diffusion behavior could be tuned by modulating the proportion of components (LiClO4, PMMA and ferrocene (Fc)) in the hybrid artificial layer (LF layer). After optimizing the proportion of each component, the resultant artificial SEI layer exhibits a high Li+ transference number (tLi+ = 0.66) and a high Young's modulus (4.8 GPa). Based on the excellent properties of the as-constructed Fc-based artificial SEI layer, a high-performance lithium anode with no volume effect and dendrite growth is achieved. The Li||Li symmetric cells with a Fc-based artificial SEI layer yielded a stable cycle performance for 1500 h with a high current density of 10 mA cm-2. The pouch cell with LF@Li anode coupled with high-loading LiFePO4 cathode (12.8 mg cm-2) exhibits excellent cyclic stability for 250 cycles with a capacity retention of 75% at 0.5C rate.

15.
Sci Bull (Beijing) ; 68(2): 180-191, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36658032

RESUMEN

Layered oxides have attracted unprecedented attention for their outstanding performance in sodium-ion battery cathodes. Among them, the two typical candidates P2 and O3 type materials generally demonstrate large diversities in specific capacity and cycling endurance with their advantages. Thus, composite materials that contain both P2 and O3 have been widely designed and constructed. Nevertheless, the anionic/cationic ions' behavior and structural evolution in such complex structures remain unclear. In this study, a deep analysis of an advanced Na0.732Ni0.273Mg0.096Mn0.63O2 material that contains 78.39 wt% P2 phase and 21.61 wt% O3 phase is performed based on two typical cathodes P2 Na0.67Ni0.33Mn0.67O2 and O3 NaNi0.5Mn0.5O2 that have the same elemental constitution but different crystal structures. Structural analysis and density functional theory (DFT) calculations suggest that the composite is preferred to form a symbiotic structure at the atomic level, and the complex lattice texture of the biphase structure can block unfavorable ion and oxygen migration in the electrode process. Consequently, the biphase structure has significantly improved the electrochemical performance and kept preferable anionic oxygen redox reversibility. Furthermore, the hetero-epitaxy-like structure of the intergrowth of P2 and O3 structures share multi-phase boundaries, where the inconsistency in electrochemical behavior between P2 and O3 phases leads to an interlocking effect to prevent severe structural collapse and relieves the lattice strain from Na+ de/intercalation. Hence, the symbiotic P2/O3 composite materials exhibited a preferable capacity and cyclability (∼130 mAh g-1 at 0.1 C, 73.1% capacity retention after 200 cycles at 1 C), as well as reversible structural evolution. These findings confirmed the advantages of using the bi/multi-phase cathode for high-energy Na-ion batteries.

16.
J Colloid Interface Sci ; 629(Pt A): 368-376, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36081214

RESUMEN

Based on the dissolution and conversion mechanism of lithium-sulfur (Li-S) batteries, insulating solid short-chain polysulfides (Li2S2/Li2S) will continuously passivate and corrode the active interface of cathode and anode, which seriously affects its performance. Herein, ammonium benzenesulfonate (NH4BS) is proposed as a soluble ammonium salt to dissolve Li2S in the ether electrolyte, according to the inductive effect of NH4+ cation and O atom on Li-S bond. This is beneficial to alleviate the interface problem of electrodes and irreversible loss of active materials. Noticeably, soluble Li2S regulates its deposition behavior from 2D to 3D, which is conducive to the more effective use of conductive surface. Moreover, the addition of NH4BS can increase the dissociation degree of long-chain polysulfides, so that the diffusion rate and reaction kinetics of active substances are improved. Profiting from these functions, the Li-S cells with NH4BS act out excellent cyclic stability in the long cycle of 0.5 C and 2 C. Under the extreme conditions of high sulfur loading and low electrolyte-sulfur ratio, the cells with NH4BS can cycle stably for 196 cycles, which significantly prolongs the battery life. The proposal of NH4BS broadens a new idea to solve the interface problem of Li-S cells and stimulate the research enthusiasm of developing soluble ammonium salt.

17.
ACS Appl Mater Interfaces ; 14(28): 31814-31823, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35815635

RESUMEN

The passivation caused by the deposition of the insulating discharge final product, lithium sulfide (Li2S), leads to the instability of the cycle and the rapid capacity fading of lithium-sulfur batteries (LSBs), which restricts the development of LSBs. This paper proposes the employment of trifluoroacetamide (TFA) as an electrolyte additive to alleviate the passivation by increasing the solubility of Li2S. The solubilization effect of TFA on Li2S is attributed to intermolecular hydrogen bonds and O-Li bonds. Li2S in the TFA-based electrolyte exhibits a flower-like 3D deposition behavior, which further alleviates the surface passivation of the electrode and impels conversion kinetics. In addition, the LiF-rich solid electrolyte interface layer can effectively defend the Li metal anode and suppress the growth of Li dendrites. Accordingly, the discharge capacity of the TFA-based battery remains at an excellent 681.2 mA h g-1 after 400 cycles with a Coulombic efficiency of 99% at 0.5 C. After the battery stabilizes, the capacity decay is only 0.036% per cycle. Under harsh conditions, such as high rates (2 C) and high sulfur loadings (5.2 mg cm-2) with lean electrolytes and elevated temperatures (60 °C), TFA-containing batteries exhibited more durable and stable cycling. This paper provides new insights into solving practical problems and gives an impetus in cycle stability for LSBs.

18.
Adv Sci (Weinh) ; 9(25): e2202082, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35778829

RESUMEN

Polyanionic compounds have large compositional flexibility, which creates a growing interest in exploring the property limits of electrode materials of rechargeable batteries. The realization of multisodium storage in the polyanionic electrodes can significantly improve capacity of the materials, but it often causes irreversible capacity loss and crystal phase evolution, especially under high-voltage operation, which remain important challenges for their application. Herein, it is shown that the multisodium storage in the polyanionic cathode can be enhanced and stabilized by increasing the entropy of the polyanionic host structure. The obtained polyanionic Na3.4 Fe0.4 Mn0.4 V0.4 Cr0.4 Ti0.4 (PO4 )3 cathode exhibits multicationic redox property to achieve high capacity with good reversibility under the high voltage of 4.5 V (vs Na/Na+ ). Exploring the underlying mechanism through operando characterizations, a stable trigonal phase with reduced volume change during the multisodium storage process is disclosed. Besides, the enhanced performance of the HE material also derives from the synergistic effect of the diverse TM species with suitable molarity. These results reveal the effectiveness of high-entropy concept in expediting high-performance polyanionic cathodes discovery.

19.
Small ; 18(29): e2107641, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35748153

RESUMEN

3D carbon frameworks are promising hosts to achieve highly reversible lithium (Li) metal anodes, whereas insufficient effects are attributed to their single electron conductivity causing local aggregating of electron/Li+ and uncontrollable Li dendrites. Herein, an ion/electron redistributed 3D flexible host is designed by lithiophilic carbon fiber cloth (CFC) modified with metal-organic framework (MOF)-derived porous carbon sheath with embedded CoP nanoparticles (CoP-C@CFC). Theory calculations demonstrate the strong binding energy and plenty of charge transfer from the reaction between CoP and Li atom are presented, which is beneficial to in situ construct a Li3 P@Co ion/electron conductive interface on every single CoP-C@CFC. Thanks to the high ionic conductive Li3 P and electron-conductive Co nanoparticles, the rapid dispersion of Li+ and obviously reduced local current density can be achieved simultaneously. Furthermore, in situ optical microscopy observations display obvious depression for volume expansion and Li dendrites. As expected, a miraculous average Coulombic efficiency (CE) of 99.96% over 1100 cycles at 3 mA cm-2 and a low overpotential of 11.5 mV with prolonged cycling of over 3200 h at 20% depth of discharge are successfully obtained. Consequently, the CoP-C@CFC-Li||LiFePO4 full cells maintain a capacity retention of 95.8% with high CE of 99.96% over 500 cycles at 2 C and excellent rate capability.

20.
Adv Mater ; 34(29): e2202624, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35561414

RESUMEN

The multiple issues of unstable electrode/electrolyte interphases, sluggish reaction kinetics, and transition-metal (TM) dissolution have long greatly affected the rate and cycling performance of cathode materials for Na-ion batteries. Herein, a multifunctional protein-based binder, sericin protein/poly(acrylic acid) (SP/PAA), is developed, which shows intriguing physiochemical properties to address these issues. The highly hydrophilic nature and strong H-bond interaction between crosslinking SP and PAA leads to a uniform coating of the binder layer, which serves as an artificial interphase on the high-voltage Na4 Mn2 Fe(PO4 )2 P2 O7 cathode material (NMFPP). Through systematic experiments and theoretical calculations, it is shown that the SP/PAA binder is electrochemically stable at high voltages and possesses increased ionic conductivity due to the interaction between sericin and electrolyte anion ClO4 - , which can provide additional sodium-migration paths with greatly reduced energy barriers. Besides, the strong interaction force between the binder and the NMFPP can effectively protect the cathode from electrolyte corrosion, suppress Mn-dissolution, stabilize crystal structure, and ensure electrode integrity during cycling. Benefiting from these merits, the SP/PAA-based NMFPP electrode displays enhanced rate and cycling performance. Of note, the universality of the SP/PAA binder is further confirmed on Na3 V2 (PO4 )2 F3 . It is believed that the versatile protein-based binder is enlightening for the development of high-performance batteries.


Asunto(s)
Sericinas , Suministros de Energía Eléctrica , Electrodos , Interfase , Iones , Sodio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...