Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mBio ; : e0258523, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37943032

RESUMEN

Bacterial growth rate varies due to changing physiological signals and is fundamentally dependent on protein synthesis. Consequently, cells alter their transcription and translation machinery to optimize the capacity for protein production under varying conditions and growth rates. Our findings demonstrate that the post-transcriptional regulator CsrA in Escherichia coli controls the expression of genes that participate in these processes. During exponential growth, CsrA represses the expression of proteins that alter or inhibit RNA polymerase (RNAP) and ribosome activity, including the ribosome hibernation factors RMF, RaiA, YqjD, ElaB, YgaM, and SRA, as well as the anti-σ70 factor, Rsd. Upon entry into the stationary phase, RaiA, YqjD, ElaB, and SRA expression was derepressed and that of RMF, YgaM, and Rsd was activated in the presence of CsrA. This pattern of gene expression likely supports global protein expression during active growth and helps limit protein production to a basal level when nutrients are limited. In addition, we identified genes encoding the paralogous C-tail anchored inner membrane proteins YqjD and ElaB as robust, direct targets of CsrA-mediated translational repression. These proteins bind ribosomes and mediate their localization to the inner cell membrane, impacting a variety of processes including protein expression and membrane integrity. Previous studies found that YqjD overexpression inhibits cell growth, suggesting that appropriate regulation of YqjD expression might play a key role in cell viability. CsrA-mediated regulation of yqjD and ribosome hibernation factors reveals a new role for CsrA in appropriating cellular resources for optimum growth under varying conditions.IMPORTANCEThe Csr/Rsm system (carbon storage regulator or repressor of stationary phase metabolites) is a global post-transcriptional regulatory system that coordinates and responds to environmental cues and signals, facilitating the transition between active growth and stationary phase. Another key determinant of bacterial lifestyle decisions is the management of the cellular gene expression machinery. Here, we investigate the connection between these two processes in Escherichia coli. Disrupted regulation of the transcription and translation machinery impacts many cellular functions, including gene expression, growth, fitness, and stress resistance. Elucidating the role of the Csr system in controlling the activity of RNAP and ribosomes advances our understanding of mechanisms controlling bacterial growth. A more complete understanding of these processes could lead to the improvement of therapeutic strategies for recalcitrant infections.

2.
Mol Microbiol ; 117(1): 32-53, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34107125

RESUMEN

The carbon storage regulator system and base-pairing small RNAs (sRNAs) represent two predominant modes of bacterial post-transcriptional regulation, which globally influence gene expression. Binding of CsrA protein to the 5' UTR or initial mRNA coding sequences can affect translation, RNA stability, and/or transcript elongation. Base-pairing sRNAs also regulate these processes, often requiring assistance from the RNA chaperone Hfq. Transcriptomics studies in Escherichia coli have identified many new CsrA targets, including Spot 42 and other base-pairing sRNAs. Spot 42 synthesis is repressed by cAMP-CRP, induced by the presence of glucose, and Spot 42 post-transcriptionally represses operons that facilitate metabolism of nonpreferred carbon sources. CsrA activity is also increased by glucose via effects on CsrA sRNA antagonists, CsrB/C. Here, we elucidate a mechanism wherein CsrA binds to and protects Spot 42 sRNA from RNase E-mediated cleavage. This protection leads to enhanced repression of srlA by Spot 42, a gene required for sorbitol uptake. A second, independent mechanism by which CsrA represses srlA is by binding to and inhibiting translation of srlM mRNA, encoding a transcriptional activator of srlA. Our findings demonstrate a novel means of regulation, by CsrA binding to a sRNA, and indicate that such interactions can help to shape complex bacterial regulatory circuitry.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , ARN Pequeño no Traducido/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Regiones no Traducidas 5'/genética , Emparejamiento Base , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Perfilación de la Expresión Génica , Glucosa/metabolismo , Proteína de Factor 1 del Huésped/genética , Proteína de Factor 1 del Huésped/metabolismo , Estabilidad del ARN , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Pequeño no Traducido/genética , Proteínas de Unión al ARN/genética , Proteínas Represoras/genética
3.
Front Microbiol ; 11: 601352, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193284

RESUMEN

The carbon storage regulator (Csr) or repressor of stationary phase metabolites (Rsm) system of Gammaproteobacteria is among the most complex and best-studied posttranscriptional regulatory systems. Based on a small RNA-binding protein, CsrA and homologs, it controls metabolism, physiology, and bacterial lifestyle decisions by regulating gene expression on a vast scale. Binding of CsrA to sequences containing conserved GGA motifs in mRNAs can regulate translation, RNA stability, riboswitch function, and transcript elongation. CsrA governs the expression of dozens of transcription factors and other regulators, further expanding its influence on cellular physiology, and these factors can participate in feedback to the Csr system. Expression of csrA itself is subject to autoregulation via translational inhibition and indirect transcriptional activation. CsrA activity is controlled by small noncoding RNAs (sRNAs), CsrB and CsrC in Escherichia coli, which contain multiple high affinity CsrA binding sites that compete with those of mRNA targets. Transcription of CsrB/C is induced by certain nutrient limitations, cellular stresses, and metabolites, while these RNAs are targeted for degradation by the presence of a preferred carbon source. Consistent with these findings, CsrA tends to activate pathways and processes that are associated with robust growth and repress stationary phase metabolism and stress responses. Regulatory loops between Csr components affect the signaling dynamics of the Csr system. Recently, systems-based approaches have greatly expanded our understanding of the roles played by CsrA, while reinforcing the notion that much remains to be learned about the Csr system.

4.
mBio ; 11(5)2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32934077

RESUMEN

The sequence-specific RNA-binding protein CsrA is the central component of the conserved global regulatory Csr system. In Escherichia coli, CsrA regulates many cellular processes, including biofilm formation, motility, carbon metabolism, iron homeostasis, and stress responses. Such regulation often involves translational repression by CsrA binding to an mRNA target, thereby inhibiting ribosome binding. While CsrA also extensively activates gene expression, no detailed mechanism for CsrA-mediated translational activation has been demonstrated. An integrated transcriptomic study identified ymdA as having the strongest CsrA-mediated activation across the E. coli transcriptome. Here, we determined that CsrA activates ymdA expression posttranscriptionally. Gel mobility shift, footprint, toeprint, and in vitro coupled transcription-translation assays identified two CsrA binding sites in the leader region of the ymdA transcript that are critical for translational activation. Reporter fusion assays confirmed that CsrA activates ymdA expression at the posttranscriptional level in vivo Furthermore, loss of binding at either of the two CsrA binding sites abolished CsrA-dependent activation. mRNA half-life studies revealed that CsrA also contributes to stabilization of ymdA mRNA. RNA structure prediction revealed an RNA hairpin upstream of the ymdA start codon that sequesters the Shine-Dalgarno (SD) sequence, which would inhibit ribosome binding. This hairpin also contains one of the two critical CsrA binding sites, with the other site located just upstream. Our results demonstrate that bound CsrA destabilizes the SD-sequestering hairpin such that the ribosome can bind and initiate translation. Since YmdA represses biofilm formation, CsrA-mediated activation of ymdA expression may repress biofilm formation under certain conditions.IMPORTANCE The Csr system of E. coli controls gene expression and physiology on a global scale. CsrA protein, the central component of this system, represses translation initiation of numerous genes by binding to target transcripts, thereby competing with ribosome binding. Variations of this mechanism are so common that CsrA is sometimes called a translational repressor. Although CsrA-mediated activation mechanisms have been elucidated in which bound CsrA inhibits RNA degradation, no translation activation mechanism has been defined. Here, we demonstrate that CsrA binding to two sites in the 5' untranslated leader of ymdA mRNA activates translation by destabilizing a structure that otherwise prevents ribosome binding. The extensive role of CsrA in activating gene expression suggests the common occurrence of similar activation mechanisms.


Asunto(s)
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Expresión Génica , Biosíntesis de Proteínas , Proteínas de Unión al ARN/genética , Proteínas Represoras/genética , Sitios de Unión , Unión Proteica , Proteínas Represoras/metabolismo
5.
Annu Rev Microbiol ; 73: 43-67, 2019 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-31100987

RESUMEN

RNA-binding proteins play vital roles in regulating gene expression and cellular physiology in all organisms. Bacterial RNA-binding proteins can regulate transcription termination via attenuation or antitermination mechanisms, while others can repress or activate translation initiation by affecting ribosome binding. The RNA targets for these proteins include short repeated sequences, longer single-stranded sequences, RNA secondary or tertiary structure, and a combination of these features. The activity of these proteins can be influenced by binding of metabolites, small RNAs, or other proteins, as well as by phosphorylation events. Some of these proteins regulate specific genes, while others function as global regulators. As the regulatory mechanisms, components, targets, and signaling circuitry surrounding RNA-binding proteins have become better understood, in part through rapid advances provided by systems approaches, a sense of the true nature of biological complexity is becoming apparent, which we attempt to capture for the reader of this review.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , ARN Bacteriano/metabolismo , Proteínas de Unión al ARN/metabolismo , Biosíntesis de Proteínas , Terminación de la Transcripción Genética
6.
PLoS One ; 12(1): e0170944, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28125689

RESUMEN

Mutations of hepatocyte growth factor activator inhibitor (HAI)-2 in humans cause sodium loss in the gastrointestinal (GI) tract in patients with syndromic congenital sodium diarrhea (SCSD). Aberrant regulation of HAI-2 target protease(s) was proposed as the cause of the disease. Here functional linkage of HAI-2 with two membrane-associated serine proteases, matriptase and prostasin was analyzed in Caco-2 cells and the human GI tract. Immunodepletion-immunoblot analysis showed that significant proportion of HAI-2 is in complex with activated prostasin but not matriptase. Unexpectedly, prostasin is expressed predominantly in activated forms and was also detected in complex with HAI-1, a Kunitz inhibitor highly related to HAI-2. Immunohistochemistry showed a similar tissue distribution of prostasin and HAI-2 immunoreactivity with the most intense labeling near the brush borders of villus epithelial cells. In contrast, matriptase was detected primarily at the lateral plasma membrane, where HAI-1 was also detected. The tissue distribution profiles of immunoreactivity against these proteins, when paired with the species detected suggests that prostasin is under tight control by both HAI-1 and HAI-2 and matriptase by HAI-1 in human enterocytes. Furthermore, HAI-1 is a general inhibitor of prostasin in a variety of epithelial cells. In contrast, HAI-2 was not found to be a significant inhibitor for prostasin in mammary epithelial cells or keratinocytes. The high levels of constitutive prostasin zymogen activation and the selective prostasin inhibition by HAI-2 in enterocytes suggest that dysregulated prostasin proteolysis may be particularly important in the GI tract when HAI-2 function is lost and/or dysregulated.


Asunto(s)
Membrana Celular/metabolismo , Enterocitos/metabolismo , Glicoproteínas de Membrana/metabolismo , Serina Endopeptidasas/metabolismo , Células CACO-2 , Humanos , Mucosa Intestinal/metabolismo
7.
PLoS One ; 11(12): e0167894, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27936035

RESUMEN

The membrane-associated serine proteases matriptase and prostasin are believed to function in close partnership. Their zymogen activation has been reported to be tightly coupled, either as a matriptase-initiated proteolytic cascade or through a mutually dependent mechanism involving the formation of a reciprocal zymogen activation complex. Here we show that this putative relationship may not apply in the context of human matriptase and prostasin. First, the tightly coupled proteolytic cascade between matriptase and prostasin might not occur when modest matriptase activation is induced by sphingosine 1-phospahte in human mammary epithelial cells. Second, prostasin is not required and/or involved in matriptase autoactivation because matriptase can undergo zymogen activation in cells that do not endogenously express prostasin. Third, matriptase is not required for and/or involved in prostasin activation, since activated prostasin can be detected in cells expressing no endogenous matriptase. Finally, matriptase and prostasin both undergo zymogen activation through an apparently un-coupled mechanism in cells endogenously expressing both proteases, such as in Caco-2 cells. In these human enterocytes, matriptase is detected primarily in the zymogen form and prostasin predominantly as the activated form, either in complexes with protease inhibitors or as the free active form. The negligible levels of prostasin zymogen with high levels of matriptase zymogen suggests that the reciprocal zymogen activation complex is likely not the mechanism for matriptase zymogen activation. Furthermore, high level prostasin activation still occurs in Caco-2 variants with reduced or absent matriptase expression, indicating that matriptase is not required and/or involved in prostasin zymogen activation. Collectively, these data suggest that any functional relationship between natural endogenous human matriptase and prostasin does not occur at the level of zymogen activation.


Asunto(s)
Precursores Enzimáticos/metabolismo , Serina Endopeptidasas/metabolismo , Línea Celular Tumoral , Activación Enzimática , Humanos
8.
PLoS One ; 11(4): e0152904, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27043831

RESUMEN

Significant proteolysis may occur during milk synthesis and secretion, as evidenced by the presence of protease-protease inhibitor complex containing the activated form of the type 2 transmembrane serine protease matriptase and the transmembrane Kunitz-type serine protease inhibitor HAI-1. In order to identify other proteolysis events that may occur during lactation, human milk was analyzed for species containing HAI-1 and HAI-2 which is closely related to HAI-1. In addition to the previously demonstrated matriptase-HAI-1 complex, HAI-1 was also detected in complex with prostasin, a glycosylphosphatidylinositol (GPI)-anchored serine protease. HAI-2 was also detected in complexes, the majority of which appear to be part of higher-order complexes, which do not bind to ionic exchange columns or immunoaffinity columns, suggesting that HAI-2 and its target proteases may be incorporated into special protein structures during lactation. The small proportion HAI-2 species that could be purified contain matriptase or prostasin. Human mammary epithelial cells are the likely cellular sources for these HAI-1 and HAI-2 complexes with matriptase and prostasin given that these protease-inhibitor complexes with the exception of prostasin-HAI-2 complex were detected in milk-derived mammary epithelial cells. The presence of these protease-inhibitor complexes in human milk provides in vivo evidence that the proteolytic activity of matriptase and prostasin are significantly elevated at least during lactation, and possibly contribute to the process of lactation, and that they are under tight control by HAI-1 and HAI-2.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Leche Humana/metabolismo , Proteínas Inhibidoras de Proteinasas Secretoras/metabolismo , Serina Endopeptidasas/metabolismo , Línea Celular , Células Epiteliales/metabolismo , Femenino , Humanos , Lactancia , Glándulas Mamarias Humanas/metabolismo , Glicoproteínas de Membrana/química , Leche Humana/química , Unión Proteica , Proteínas Inhibidoras de Proteinasas Secretoras/química , Proteolisis , Serina Endopeptidasas/química
9.
J Invest Dermatol ; 136(6): 1210-1218, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26872599

RESUMEN

Pericellular plasmin generation, an important pathophysiological process, can be initiated and accelerated by the autoactivation of the type 2 transmembrane serine protease matriptase and subsequent activation of urokinase plasminogen activator. The link between matriptase and plasminogen was initially thought to be one-directional: from matriptase, through plasminogen activator, to plasminogen. However, in the current study, we now show that primary human keratinocytes that are undergoing calcium-induced differentiation can rapidly activate matriptase in response to serum treatment via a mechanism dependent on intracellular calcium, protein kinase C, and phosphatidylinositol 3-kinases-based signaling. The serum factor, responsible for the induction of matriptase zymogen activation, was shown to be plasminogen. A sub-pM concentration of plasminogen (but not plasmin) acting at the cell surface is sufficient to induce matriptase activation, suggesting high potency and specificity of the induction. After matriptase zymogen activation, a proportion of active matriptase is shed into extracellular milieu and returns to the cell surface to accelerate plasmin generation. The ability of plasminogen to induce matriptase zymogen activation and the subsequent acceleration of plasmin generation by active matriptase reveals a feed-forward mechanism that allows differentiating human keratinocytes to rapidly and robustly activate pericellular proteolysis.


Asunto(s)
Activación Enzimática/fisiología , Fibrinolisina/metabolismo , Queratinocitos/citología , Queratinocitos/enzimología , Plasminógeno/metabolismo , Serina Endopeptidasas/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Humanos , Proteolisis , Muestreo , Sensibilidad y Especificidad
10.
PLoS One ; 10(7): e0132163, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26171609

RESUMEN

The gene product of SPINT 2, that encodes a transmembrane, Kunitz-type serine protease inhibitor independently designated as HAI-2 or placenta bikunin (PB), is involved in regulation of sodium absorption in human gastrointestinal track. Here, we show that SPINT 2 is expressed as two species of different size (30-40- versus 25-kDa) due to different N-glycans on Asn-57. The N-glycan on 25-kDa HAI-2 appears to be of the oligomannose type and that on 30-40-kDa HAI-2 to be of complex type with extensive terminal N-acetylglucosamine branching. The two different types of N-glycan differentially mask two epitopes on HAI-2 polypeptide, recognized by two different HAI-2 mAbs. The 30-40-kDa form may be mature HAI-2, and is primarily localized in vesicles/granules. The 25-kDa form is likely immature HAI-2, that remains in the endoplasmic reticulum (ER) in the perinuclear regions of mammary epithelial cells. The two different N-glycans could, therefore, represent different maturation stages of N-glycosylation with the 25-kDa likely a precursor of the 30-40-kDa HAI-2, with the ratio of their levels roughly similar among a variety of cells. In breast cancer cells, a significant amount of the 30-40-kDa HAI-2 can translocate to and inhibit matriptase on the cell surface, followed by shedding of the matriptase-HAI-2 complex. The 25-kDa HAI-2 appears to have also exited the ER/Golgi, being localized at the cytoplasmic face of the plasma membrane of breast cancer cells. While the 25-kDa HAI-2 was also detected at the extracellular face of plasma membrane at very low levels it appears to have no role in matriptase inhibition probably due to its paucity on the cell surface. Our study reveals that N-glycan branching regulates HAI-2 through different subcellular distribution and subsequently access to different target proteases.


Asunto(s)
Espacio Intracelular/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Polisacáridos/química , Serina Endopeptidasas/metabolismo , Secuencia de Aminoácidos , Línea Celular Tumoral , Membrana Celular/metabolismo , Femenino , Regulación de la Expresión Génica , Glicosilación , Humanos , Datos de Secuencia Molecular , Peso Molecular , Embarazo , Transporte de Proteínas
11.
PLoS One ; 10(3): e0120489, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25786220

RESUMEN

The type 2 transmembrane serine protease matriptase is under tight control primarily by the actions of the integral membrane Kunitz-type serine protease inhibitor HAI-1. Growing evidence indicates that HAI-2 might also be involved in matriptase inhibition in some contexts. Here we showed that matriptase inhibition by HAI-2 depends on the subcellular localizations of HAI-2, and is observed in breast cancer cells but not in mammary epithelial cells. HAI-2 is co-expressed with matriptase in 21 out of 26 human epithelial and carcinoma cells examined. HAI-2 is also a potent matriptase inhibitor in solution, but in spite of this, HAI-2 inhibition of matriptase is not observed in all contexts where HAI-2 is expressed, unlike what is seen for HAI-1. Induction of matriptase zymogen activation in mammary epithelial cells results in the formation of matriptase-HAI-1 complexes, but matriptase-HAI-2 complexes are not observed. In breast cancer cells, however, in addition to the appearance of matriptase-HAI-1 complex, three different matriptase-HAI-2 complexes, are formed following the induction of matriptase activation. Immunofluorescent staining reveals that activated matriptase is focused at the cell-cell junctions upon the induction of matriptase zymogen activation in both mammary epithelial cells and breast cancer cells. HAI-2, in contrast, remains localized in vesicle/granule-like structures during matriptase zymogen activation in human mammary epithelial cells. In breast cancer cells, however, a proportion of the HAI-2 reaches the cell surface where it can gain access to and inhibit active matriptase. Collectively, these data suggest that matriptase inhibition by HAI-2 requires the translocation of HAI-2 to the cell surface, a process which is observed in some breast cancer cells but not in mammary epithelial cells.


Asunto(s)
Precursores Enzimáticos/metabolismo , Células Epiteliales/enzimología , Glándulas Mamarias Humanas/enzimología , Glicoproteínas de Membrana/metabolismo , Proteínas Inhibidoras de Proteinasas Secretoras/metabolismo , Serina Endopeptidasas/metabolismo , Línea Celular , Línea Celular Tumoral , Gránulos Citoplasmáticos/química , Gránulos Citoplasmáticos/metabolismo , Inducción Enzimática , Precursores Enzimáticos/genética , Células Epiteliales/patología , Expresión Génica , Humanos , Concentración de Iones de Hidrógeno , Uniones Intercelulares/metabolismo , Glándulas Mamarias Humanas/patología , Glicoproteínas de Membrana/genética , Especificidad de Órganos , Unión Proteica , Transporte de Proteínas , Proteínas Inhibidoras de Proteinasas Secretoras/genética , Serina Endopeptidasas/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...