Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Nanomedicine ; 18: 4253-4274, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37534057

RESUMEN

Background: Cancer multidrug resistance (MDR) is an important factor that severely affects the chemotherapeutic efficacy. Among various methods to bypass MDR, usage of cytokines, such as tumor necrosis factor alpha (TNFα) is attractive, which exerts antitumor effects of immunotherapeutic response and apoptotic/proinflammatory pathways. Nevertheless, the challenges remain how to implement targeted delivery of TNFα to reduce toxicity and manifest the involved signaling mechanism that subdues MDR. Methods: We synthesized a multifunctional nanosytem, in which TNFα covalently bound to doxorubicin (Dox)-loaded pH-responsive mesoporous silica nanoparticles (MSN) through bi-functional polyethylene glycol (TNFα-PEG-MSN-Hydrazone-Dox) as a robust design to overcome MDR. Results: The salient features of this nanoplatform are: 1) by judicious tailoring of TNFα concentration conjugated on MSN, we observed it could lead to a contrary effect of either proliferation or suppression of tumor growth; 2) the MSN-TNFα at higher concentration serves multiple functions, besides tumor targeting and inducer of apoptosis through extrinsic pathway, it inhibits the expression level of p-glycoprotein (P-gp), a cell membrane protein that functions as a drug efflux pump; 3) the enormous surface area of MSN provides for TNFα functionalization, and the nanochannels accommodate chemotherapeutics, Dox; 4) targeted intracellular release of Dox through the pH-dependent cleavage of hydrazone bonds induces apoptosis by the specific intrinsic pathway; and 5) TNFα-PEG-MSN-Hydrazone-Dox (MSN-Dox-TNFα) could infiltrate deep into the 3D spheroid tumor model through disintegration of tight junction proteins. When administered intratumorally in a Dox-resistant mouse tumor model, MSN-Dox-TNFα exhibited a synergistic therapeutic effect through the collective performances of TNFα and Dox. Conclusion: We hereby develop and demonstrate a multifunctional MSN-Dox-TNFα system with concentration-tailored TNFα that can abrogate the drug resistance mechanism, and significantly inhibit the tumor growth through both intrinsic and extrinsic apoptosis pathways, thus making it a highly potential nanomedicine translated in the treatment of MDR tumors.


Asunto(s)
Nanopartículas , Neoplasias , Ratones , Animales , Citocinas , Factor de Necrosis Tumoral alfa , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Doxorrubicina , Apoptosis , Resistencia a Múltiples Medicamentos , Nanopartículas/química , Proliferación Celular , Hidrazonas/farmacología , Hidrazonas/uso terapéutico , Dióxido de Silicio/química , Resistencia a Antineoplásicos , Porosidad
2.
Pharmacol Res ; 161: 105183, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32896579

RESUMEN

Non-small-cell lung cancer (NSCLC) is a leading cause of cancer-related death worldwide. NSCLC patients with overexpressed or mutated epidermal growth factor receptor (EGFR) related to disease progression are treated with EGFR-tyrosine kinase inhibitors (EGFR-TKIs). Acquired drug resistance after TKI treatments has been a major focus for development of NSCLC therapies. This study aimed to establish afatinib-resistant cell lines from which afatinib resistance-associated genes are identified and the underlying mechanisms of multiple-TKI resistance in NSCLC can be further investigated. Nude mice bearing subcutaneous NSCLC HCC827 tumors were administered with afatinib at different dose intensities (5-100 mg/kg). We established three HCC827 sublines resistant to afatinib (IC50 > 1 µM) with cross-resistance to gefitinib (IC50 > 5 µM). cDNA microarray revealed several of these sublines shared 27 up- and 13 down-regulated genes. The mRNA expression of selective novel genes - such as transmembrane 4 L six family member 19 (TM4SF19), suppressor of cytokine signaling 2 (SOCS2), and quinolinate phosphoribosyltransferase (QPRT) - are responsive to afatinib treatments only at high concentrations. Furthermore, c-MET amplification and activations of a subset of tyrosine kinase receptors were observed in all three resistant cells. PHA665752, a c-MET inhibitor, remarkably increased the sensitivity of these resistant cells to afatinib (IC50 = 12-123 nM). We established afatinib-resistant lung cancer cell lines and here report genes associated with afatinib resistance in human NSCLC. These cell lines and the identified genes serve as useful investigational tools, prognostic biomarkers of TKI therapies, and promising molecule targets for development of human NSCLC therapeutics.


Asunto(s)
Afatinib/farmacología , Antineoplásicos/farmacología , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Resistencia a Antineoplásicos/genética , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Animales , Biomarcadores de Tumor/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Masculino , Ratones Desnudos , Análisis de Secuencia por Matrices de Oligonucleótidos , Transcriptoma , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Chin Med ; 12: 11, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28450884

RESUMEN

BACKGROUND: Herbochip® technology is a high throughput drug screening platform in a reverse screening manner, in which potential chemical leads in herbal extracts are immobilized and drug target proteins can be used as probes for screening process [BMC Complementary and Alternative Medicine (2015) 15:146]. While herbal medicines represent an ideal reservoir for drug screenings, here a molecular chaperone GRP78 is demonstrated to serve as a potential target for antiviral drug discovery. METHODS: We cloned and expressed a truncated but fully functional form of human GRP78 (hGRP781-508) and used it as a probe for anti-HBV drug screening on herbochips. In vitro cytotoxicity and in vitro anti-HBV activity of the herbal extracts were evaluated by MTT and ELISA assays, respectively. Finally, anti-HBV activity was confirmed by in vivo assay using DHBV DNA levels in DHBV-infected ducklings as a model. RESULTS: Primary screenings using GRP78 on 40 herbochips revealed 11 positives. Four of the positives, namely Dioscorea bulbifera, Lasiosphaera fenzlii, Paeonia suffruticosa and Polygonum cuspidatum were subjected to subsequent assays. None of the above extracts was cytotoxic to AML12 cells, but P. cuspidatum extract (PCE) was found to be cytotoxic to HepG2 2.2.15 cells. Both PCE and P. suffruticosa extract (PSE) suppressed secretion of HBsAg and HBeAg in HepG2 2.2.15 cells. The anti-HBV activity of PSE was further confirmed in vivo. CONCLUSION: We have demonstrated that GRP78 is a valid probe for anti-HBV drug screening on herbochips. We have also shown that PSE, while being non-cytotoxic, possesses in vitro and in vivo anti-HBV activities. Taken together, our data suggest that PSE may be a potential anti-HBV agent for therapeutic use.

4.
Eur J Med Chem ; 126: 202-217, 2017 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-27776274

RESUMEN

µ-Opioid receptor (MOR) agonists are analgesics used clinically for the treatment of moderate to severe pain, but their use is associated with severe adverse effects such as respiratory depression, constipation, tolerance, dependence, and rewarding effects. In this study, we identified N-({2-[(4-bromo-2-trifluoromethoxyphenyl)sulfonyl]-1,2,3,4-tetrahydro-1-isoquinolinyl}methyl)cyclohexanecarboxamide (1) as a novel opioid receptor agonist by high-throughput screening. Structural modifications made to 1 to improve potency and blood-brain-barrier (BBB) penetration resulted in compounds 45 and 46. Compound 45 was a potent MOR/KOR (κ-opioid receptor) agonist, and compound 46 was a potent MOR and medium KOR agonist. Both 45 and 46 demonstrated a significant anti-nociceptive effect in a tail-flick test performed in wild type (WT) B6 mice. The ED50 value of 46 was 1.059 mg/kg, and the brain concentrations of 45 and 46 were 7424 and 11696 ng/g, respectively. Accordingly, compounds 45 and 46 are proposed for lead optimization and in vivo disease-related pain studies.


Asunto(s)
Analgésicos/química , Analgésicos/farmacología , Benzamidas/química , Benzamidas/farmacología , Receptores Opioides mu/metabolismo , Adenilil Ciclasas/metabolismo , Analgésicos/síntesis química , Analgésicos/metabolismo , Animales , Benzamidas/síntesis química , Benzamidas/metabolismo , Barrera Hematoencefálica/metabolismo , Línea Celular , Evaluación Preclínica de Medicamentos , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Masculino , Ratones , Simulación de Dinámica Molecular , Conformación Proteica , Receptores Opioides mu/química , Relación Estructura-Actividad
5.
BMC Complement Altern Med ; 15: 146, 2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-25963543

RESUMEN

BACKGROUND: Geranium wilfordii is one of the major species used as Herba Geranii (lao-guan-cao) in China, it is commonly used solely or in polyherbal formulations for treatment of joint pain resulted from rheumatoid arthritis (RA) and gout. This herb is used to validate a target-based drug screening platform called Herbochip® and evaluate anti-inflammatory effects of Geranium wilfordii ethanolic extract (GWE) using tumor necrosis factor-alpha (TNF-α) as a drug target together with subsequent in vitro and in vivo assays. METHODS: A microarray-based drug screening platform was constructed by arraying HPLC fractions of herbal extracts onto a surface-activated polystyrene slide (Herbochip®). Using TNF-α as a molecular probe, fractions of 82 selected herbal extracts, including GWE, were then screened to identify plant extracts containing TNF-α-binding agents. Cytotoxicity of GWE and modulatory effects of GWE on TNF-α expression were evaluated by cell-based assays using TNF-α sensitive murine fibrosarcoma L929 cells as an in vitro model. RESULTS: The in vivo anti-inflammatory effects of GWE were further assessed by animal models including carrageenan-induced hind paw edema in rats and xylene-induced ear edema in mice, in comparison with aspirin. The hybridization data obtained by Herbochip® analysis showed unambiguous signals which confirmed TNF-α binding activity in 46 herbal extracts including GWE. In L929 cells GWE showed significant inhibitory effect on TNF-α expression with negligible cytotoxicity. GWE also significantly inhibited formation of carrageenan-induced hind paw edema and xylene-induced ear edema in animal models, indicating that it indeed possessed anti-inflammatory activity. CONCLUSION: We have thus validated effectiveness of the Herbochip® drug screening platform using TNF-α as a molecular target. Subsequent experiments on GWE lead us to conclude that the anti-RA activity of GWE can be attributed to inhibitory effect of GWE on the key inflammatory factor, TNF-α. Our results contribute towards validation of the traditional use of GWE in the treatment of RA and other inflammatory joint disorders.


Asunto(s)
Antiinflamatorios/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Geranium/química , Inflamación/tratamiento farmacológico , Fitoterapia , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Antiinflamatorios/análisis , Antiinflamatorios/farmacología , Artritis Reumatoide/metabolismo , Carragenina/uso terapéutico , Línea Celular , China , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/uso terapéutico , Edema/tratamiento farmacológico , Edema/metabolismo , Inflamación/inducido químicamente , Inflamación/metabolismo , Masculino , Ratones Endogámicos ICR , Análisis por Micromatrices/métodos , Ratas Sprague-Dawley , Xilenos
6.
Mol Nutr Food Res ; 58(6): 1168-76, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24668568

RESUMEN

SCOPE: We investigated whether rutin, a flavonoid isolated from Toona sinensis Roem, has the ability to enhance insulin-dependent receptor kinase (IRK) activity and glucose transporter 4 (GLUT4) translocation in differentiated myotubes. We also tested the effects of rutin treatment in insulin-resistant mice using an oral glucose tolerance test (OGTT). METHODS AND RESULTS: Rutin potentiated insulin receptor kinase (IRK) phosphorylation when IRK autophosphorylation was triggered by insulin in differentiated myotubes. Co-treatment of cells with rutin and insulin attenuated S961-mediated inhibition of insulin-dependent GLUT4 translocation. In S961-treated C57BL/6 mice, an in vivo model of insulin resistance and type 2 diabetes, rutin treatment showed a normoglycemic effect in the OGTT. CONCLUSION: This study shows evidence that rutin may serve as a potential agent for glycemic control through enhancement of IRK activity, thereby inducing the insulin signaling pathway causing increased GLUT4 translocation and increased glucose uptake.


Asunto(s)
Transportador de Glucosa de Tipo 4/metabolismo , Extractos Vegetales/farmacología , Receptor de Insulina/metabolismo , Rutina/farmacología , Animales , Glucemia , Células Cultivadas , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Prueba de Tolerancia a la Glucosa , Insulina/metabolismo , Resistencia a la Insulina , Masculino , Meliaceae/química , Ratones , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/efectos de los fármacos , Mioblastos Esqueléticos/citología , Mioblastos Esqueléticos/efectos de los fármacos , Fosforilación , Transducción de Señal
7.
Int J Mol Sci ; 14(9): 19169-85, 2013 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-24051401

RESUMEN

Treatment with geldanamycin (GA) leads to an increase in [Ca2+]c and the production of reactive oxygen species (ROS) in rat brain tumor 9L RBT cells. GA-exerted calcium signaling was blocked by BAPTA/AM and EGTA. The effect of GA on [Ca2+]c was significantly reduced in the presence of thapsigargin (TG) and ruthenium red (RR). GA-induced GRP78 expression is significantly decreased in the presence of BAPTA/AM, EGTA and RR, suggesting that the calcium influx from the extracellular space and intracellular calcium store oscillations are contributed to by the calcium mobilization and GRP78 expression induced by GA. The induced GRP78 expression is sensitive to added U73122 and Ro-31-8425, pinpointing the involvement of phospholipase C (PLC) and protein kinase C (PKC) in GA-induced endoplasmic reticulum (ER) stress. The antioxidants N-acetylcysteine (NAC), BAPTA/AM, EGTA and H7 also have significant inhibitory effects on ROS generation. Finally, neither H7 nor NAC was able to affect the calcium response elicited by GA. Our results suggest that the causal signaling cascade during GA-inducted GRP78 expression occurs via a pathway that connects PLC to cytoplasmic calcium increase, PKC activation and, then, finally, ROS generation. Our data provides new insights into the influence of GA on ER stress response in 9L RBT cells.


Asunto(s)
Antibióticos Antineoplásicos/toxicidad , Benzoquinonas/toxicidad , Calcio/metabolismo , Expresión Génica/efectos de los fármacos , Proteínas de Choque Térmico/metabolismo , Lactamas Macrocíclicas/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Animales , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Quelantes/farmacología , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrenos/farmacología , Proteínas de Choque Térmico/genética , Indoles/farmacología , Maleimidas/farmacología , Proteína Quinasa C/metabolismo , Pirrolidinonas/farmacología , Ratas , Fosfolipasas de Tipo C/antagonistas & inhibidores , Fosfolipasas de Tipo C/metabolismo
8.
Int J Med Mushrooms ; 15(3): 277-86, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23662615

RESUMEN

In our previous research, Cordyceps militaris (CM) had a hypoglycemic effect in normal rats. In this study we wanted to elucidate whether CM also had an effect on diabetic rats. Twelve rats with streptozotocin-induced diabetes were separated randomly into 2 groups. First, aqueous extracts of CM 10 mg/kg (CM group) or saline (control group) was fed to the rats; then the plasma glucose levels were assayed. Second, the signaling proteins IRS-1 and GLUT-4 collected from the muscle were detected. Finally, another 2 groups of rats were injected with atropine 0.1 mg/kg intraperitoneally just before the CM/saline feeding, and the assays mentioned above were repeated. Blood glucose decreased 7.2% in the CM group but only 1.5% in the control group (P < 0.05). The IRS-1 signal was 2.9-fold higher than actin in the CM group but only 0.8-fold higher in the control group (P < 0.005). In GLUT-4 signal, the difference was 1.7- vs. 0.6-fold, respectively, compared with actin (P < 0.05). However, atropine injection made CM-induced hypoglycemia or elevation of IRS-1 and GLUT-4 not significant. In conclusion, CM had a hypoglycemic effect in diabetic rats and atropine blocked it. Therefore, the cholinergic activation also was considered to be involved in the hypoglycemic effect of CM in rats with streptozotocin-induced diabetes.


Asunto(s)
Glucemia/efectos de los fármacos , Colinérgicos/farmacología , Fibras Colinérgicas/efectos de los fármacos , Cordyceps/química , Diabetes Mellitus Experimental/tratamiento farmacológico , Hipoglucemiantes/farmacología , Animales , Atropina/antagonistas & inhibidores , Fraccionamiento Químico , Colinérgicos/química , Hipoglucemiantes/química , Masculino , Distribución Aleatoria , Ratas , Ratas Wistar , Agua
9.
Biomaterials ; 34(17): 4223-34, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23489927

RESUMEN

Interactions between blood vessels and osteoblasts-bone-forming cells-are critical for successful bone development. We therefore investigated the endothelial differentiation capacity of mesenchymal stem cells (MSCs) derived from bone tissue. We found that fetal pre-osteoblast and adult trabecular bone-derived (TB) MSCs express similar surface markers as bone marrow (BM) MSCs and can differentiate into adipocytes, osteoblasts, and chondrocytes. However, when cultured in extracellular matrix (ECM) and endothelial differentiation conditions, bone-derived MSCs (B-MSCs) more readily form tubular structures and uptake acetylated low-density lipoproteins, fulfilling the functional criteria for endothelial cells (ECs). Moreover, addition of B-MSCs but not other cells significantly enhanced vessel formation in the in vivo chick chorioallantoic membrane assay. Mechanistically, this appears to be due to the upregulation of the endothelial transcription factor forkhead box protein C2 (FOXC2) and its downstream gene αvß3 integrin/CD61in B-MSCs but not BMMSCs by laminin, a component protein of the ECM. Our findings not only reveal discrepant differentiation capacity for various tissue-specific MSCs, but also highlight the critical role of the niche-in this case, the ECM and its component proteins-in determining lineage commitment of stem cells.


Asunto(s)
Diferenciación Celular , Proteínas de la Matriz Extracelular/metabolismo , Células Endoteliales de la Vena Umbilical Humana/citología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Nicho de Células Madre , Adulto , Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Animales , Biomarcadores/metabolismo , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Diferenciación Celular/genética , Embrión de Pollo , Matriz Extracelular/metabolismo , Feto/citología , Factores de Transcripción Forkhead/metabolismo , Técnicas de Silenciamiento del Gen , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Laminina/metabolismo , Neovascularización Fisiológica/genética , Osteoblastos/citología , Osteoblastos/metabolismo , Nicho de Células Madre/genética , Factores de Transcripción/metabolismo , Regulación hacia Arriba/genética
10.
Biomed Res Int ; 2013: 170398, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23484086

RESUMEN

Human ribonucleases A (hRNaseA) superfamily consists of thirteen members with high-structure similarities but exhibits divergent physiological functions other than RNase activity. Evolution of hRNaseA superfamily has gained novel functions which may be preserved in a unique region or domain to account for additional molecular interactions. hRNase3 has multiple functions including ribonucleolytic, heparan sulfate (HS) binding, cellular binding, endocytic, lipid destabilization, cytotoxic, and antimicrobial activities. In this study, three putative multifunctional regions, (34)RWRCK(38) (HBR1), (75)RSRFR(79) (HBR2), and (101)RPGRR(105) (HBR3), of hRNase3 have been identified employing in silico sequence analysis and validated employing in vitro activity assays. A heparin binding peptide containing HBR1 is characterized to act as a key element associated with HS binding, cellular binding, and lipid binding activities. In this study, we provide novel insights to identify functional regions of hRNase3 that may have implications for all hRNaseA superfamily members.


Asunto(s)
Proteína Catiónica del Eosinófilo/química , Modelos Químicos , Línea Celular , Proteína Catiónica del Eosinófilo/metabolismo , Heparina/química , Heparina/metabolismo , Humanos , Lípidos/química , Unión Proteica , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA