Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
3.
PLoS One ; 16(1): e0245454, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33444382

RESUMEN

Genome association studies in human and genetic studies in mouse implicated members of the transmembrane protein 132 (TMEM132) family in multiple conditions including panic disorder, hearing loss, limb and kidney malformation. However, the presence of five TMEM132 paralogs in mammalian genomes makes it extremely challenging to reveal the full requirement for these proteins in vivo. In contrast, there is only one TMEM132 homolog, detonator (dtn), in the genome of fruit fly Drosophila melanogaster, enabling straightforward research into its in vivo function. In the current study, we generate multiple loss-of-function dtn mutant fly strains through a polycistronic tRNA-gRNA approach, and show that most embryos lacking both maternal and paternal dtn fail to hatch into larvae, indicating an essential role of dtn in Drosophila reproduction.


Asunto(s)
Sistemas CRISPR-Cas , Drosophila melanogaster/genética , Edición Génica , ARN Guía de Kinetoplastida/genética , ARN de Transferencia/genética , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/fisiología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología , Femenino , Fertilidad , Edición Génica/métodos , Mutación con Pérdida de Función , Masculino , Reproducción
4.
PLoS Genet ; 16(6): e1008792, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32579612

RESUMEN

While rare pathogenic copy-number variants (CNVs) are associated with both neuronal and non-neuronal phenotypes, functional studies evaluating these regions have focused on the molecular basis of neuronal defects. We report a systematic functional analysis of non-neuronal defects for homologs of 59 genes within ten pathogenic CNVs and 20 neurodevelopmental genes in Drosophila melanogaster. Using wing-specific knockdown of 136 RNA interference lines, we identified qualitative and quantitative phenotypes in 72/79 homologs, including 21 lines with severe wing defects and six lines with lethality. In fact, we found that 10/31 homologs of CNV genes also showed complete or partial lethality at larval or pupal stages with ubiquitous knockdown. Comparisons between eye and wing-specific knockdown of 37/45 homologs showed both neuronal and non-neuronal defects, but with no correlation in the severity of defects. We further observed disruptions in cell proliferation and apoptosis in larval wing discs for 23/27 homologs, and altered Wnt, Hedgehog and Notch signaling for 9/14 homologs, including AATF/Aatf, PPP4C/Pp4-19C, and KIF11/Klp61F. These findings were further supported by tissue-specific differences in expression patterns of human CNV genes, as well as connectivity of CNV genes to signaling pathway genes in brain, heart and kidney-specific networks. Our findings suggest that multiple genes within each CNV differentially affect both global and tissue-specific developmental processes within conserved pathways, and that their roles are not restricted to neuronal functions.


Asunto(s)
Variaciones en el Número de Copia de ADN , Proteínas de Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Trastornos del Neurodesarrollo/genética , Animales , Ojo Compuesto de los Artrópodos/embriología , Ojo Compuesto de los Artrópodos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Neuronas/citología , Neuronas/metabolismo , Especificidad de Órganos , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal , Alas de Animales/embriología , Alas de Animales/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
6.
Exp Hematol ; 80: 42-54.e4, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31756359

RESUMEN

In contrast to steady-state erythropoiesis, which generates new erythrocytes at a constant rate, stress erythropoiesis rapidly produces a large bolus of new erythrocytes in response to anemic stress. In this study, we illustrate that Yes-associated protein (Yap1) promotes the rapid expansion of a transit-amplifying population of stress erythroid progenitors in vivo and in vitro. Yap1-mutated erythroid progenitors failed to proliferate in the spleen after transplantation into lethally irradiated recipient mice. Additionally, loss of Yap1 impaired the growth of actively proliferating erythroid progenitors in vitro. This role in proliferation is supported by gene expression profiles showing that transiently amplifying stress erythroid progenitors express high levels of genes associated with Yap1 activity and genes induced by Yap1. Furthermore, Yap1 promotes the proliferation of stress erythroid progenitors in part by regulating the expression of key glutamine-metabolizing enzymes. Thus, Yap1 acts as an erythroid regulator that coordinates the metabolic status with the proliferation of erythroid progenitors to promote stress erythropoiesis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Proteínas de Ciclo Celular/fisiología , Células Precursoras Eritroides/fisiología , Eritropoyesis/fisiología , Regeneración/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Alelos , Animales , División Celular , Células Cultivadas , Inducción Enzimática , Células Precursoras Eritroides/citología , Eliminación de Gen , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/biosíntesis , Quimera por Radiación , Tolerancia a Radiación , Proteínas Recombinantes/metabolismo , Bazo/citología , Estrés Fisiológico/genética , Factores de Transcripción/genética , Proteínas Señalizadoras YAP
7.
Blood Adv ; 3(14): 2205-2217, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31324641

RESUMEN

Anemic stress induces the proliferation of stress erythroid progenitors in the murine spleen that subsequently differentiate to generate erythrocytes to maintain homeostasis. This process relies on the interaction between stress erythroid progenitors and the signals generated in the splenic erythroid niche. In this study, we demonstrate that although growth-differentiation factor 15 (Gdf15) is not required for steady-state erythropoiesis, it plays an essential role in stress erythropoiesis. Gdf15 acts at 2 levels. In the splenic niche, Gdf15-/- mice exhibit defects in the monocyte-derived expansion of the splenic niche, resulting in impaired proliferation of stress erythroid progenitors and production of stress burst forming unit-erythroid cells. Furthermore, Gdf15 signaling maintains the hypoxia-dependent expression of the niche signal, Bmp4, whereas in stress erythroid progenitors, Gdf15 signaling regulates the expression of metabolic enzymes, which contribute to the rapid proliferation of stress erythroid progenitors. Thus, Gdf15 functions as a comprehensive regulator that coordinates the stress erythroid microenvironment with the metabolic status of progenitors to promote stress erythropoiesis.


Asunto(s)
Células Precursoras Eritroides/metabolismo , Eritropoyesis/genética , Factor 15 de Diferenciación de Crecimiento/genética , Nicho de Células Madre , Estrés Fisiológico , Animales , Diferenciación Celular , Proliferación Celular , Factor 15 de Diferenciación de Crecimiento/metabolismo , Ratones , Ratones Noqueados , Modelos Biológicos , Transducción de Señal
8.
DNA Cell Biol ; 38(1): 91-106, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30461308

RESUMEN

The considerable amount of experimental evidence has defined the Hippo pathway as a tumor suppressive pathway and increased expression and/or activity of its oncogenic effectors is frequently observed in cancer. However, clinical studies have failed to attribute cancer development and progression to mutations in the pathway. In explaining this conundrum, we investigated the expression and functions of a C-terminally truncated isoform of large tumor suppressor kinase 1 (LATS1) called short LATS1 (sLATS1) in human cell lines and Drosophila. Intriguingly, through overexpression of sLATS1, we demonstrated that sLATS1 either activates or suppresses the activity of Yes-associated protein (YAP), one of the effectors of the Hippo pathway, in a cell type-specific manner. The activation is mediated through inhibition of full-length LATS1, whereas suppression of YAP is accomplished through sLATS1-YAP interaction. In HEK293T cells, the former mechanism may affect the cellular response more dominantly, whereas in U2OS cells and developing tissues in Drosophila, the latter mechanism may be solely carried out. Finally, to find the clinical relevance of this molecule, we examined the expression of sLATS1 in breast cancer patients. The transcriptome analysis showed that the ratio of sLATS1 to LATS1 was increased in tumor tissues comparing to their adjacent normal tissues.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias de la Mama/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Western Blotting , Carcinogénesis/metabolismo , Técnicas de Cultivo de Célula , Fraccionamiento Celular , Proliferación Celular/genética , Drosophila , Proteínas de Drosophila/metabolismo , Femenino , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Células HEK293 , Vía de Señalización Hippo , Humanos , Inmunoprecipitación , Proteínas Nucleares/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal , Transactivadores/metabolismo , Factores de Transcripción , Proteínas Señalizadoras YAP
9.
Methods Mol Biol ; 1893: 75-85, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30565126

RESUMEN

Protein-protein interactions provide a common mechanism for regulating protein functions and also serve as the fundamental step of many biochemical reactions. To accurately determine the involvement and function of protein-protein interactions, it is crucial to detect the interactions with the minimum number of artifacts. In this chapter, we report the method of bimolecular fluorescence complementation (BiFC) in tissue culture and developing tissues of Drosophila, which allows the visualization of subcellular localization of protein-protein interactions in living cells.


Asunto(s)
Drosophila/metabolismo , Técnica del Anticuerpo Fluorescente , Imagen Molecular , Mapeo de Interacción de Proteínas , Animales , Línea Celular , Drosophila/embriología , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Expresión Génica , Humanos , Discos Imaginales , Microscopía Fluorescente/métodos , Imagen Molecular/métodos , Mapeo de Interacción de Proteínas/métodos , Técnicas de Cultivo de Tejidos , Alas de Animales
10.
Dev Biol ; 420(1): 186-195, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27693235

RESUMEN

How organ growth is regulated in multicellular organisms is a long-standing question in developmental biology. It is known that coordination of cell apoptosis and proliferation is critical in cell number and overall organ size control, while how these processes are regulated is still under investigation. In this study, we found that functional loss of a gene in Drosophila, named Drosophila defender against apoptotic cell death 1 (dDad1), leads to a reduction of tissue growth due to increased apoptosis and lack of cell proliferation. The dDad1 protein, an orthologue of mammalian Dad1, was found to be crucial for protein N-glycosylation in developing tissues. Our study demonstrated that loss of dDad1 function activates JNK signaling and blocking the JNK pathway in dDad1 knock-down tissues suppresses cell apoptosis and partially restores organ size. In addition, reduction of dDad1 triggers ER stress and activates unfolded protein response (UPR) signaling, prior to the activation of JNK signaling. Furthermore, Perk-Atf4 signaling, one branch of UPR pathways, appears to play a dual role in inducing cell apoptosis and mediating compensatory cell proliferation in this dDad1 knock-down model.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/genética , Genes de Insecto , Morfogénesis/genética , Animales , Apoptosis/genética , Biocatálisis , Proliferación Celular , Células Clonales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Técnicas de Silenciamiento del Gen , Glicosilación , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas , Modelos Biológicos , Mutación/genética , Subunidades de Proteína/metabolismo , Fracciones Subcelulares/metabolismo
11.
Protein Cell ; 7(5): 362-72, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27000077

RESUMEN

Mammalian pancreatic ß-cells play a pivotal role in development and glucose homeostasis through the production and secretion of insulin. Functional failure or decrease in ß-cell number leads to type 2 diabetes (T2D). Despite the physiological importance of ß-cells, the viability of ß-cells is often challenged mainly due to its poor ability to adapt to their changing microenvironment. One of the factors that negatively affect ß-cell viability is high concentration of free fatty acids (FFAs) such as palmitate. In this work, we demonstrated that Yes-associated protein (Yap1) is activated when ß-cells are treated with palmitate. Our loss- and gain-of-function analyses using rodent insulinoma cell lines revealed that Yap1 suppresses palmitate-induced apoptosis in ß-cells without regulating their proliferation. We also found that upon palmitate treatment, re-arrangement of F-actin mediates Yap1 activation. Palmitate treatment increases expression of one of the Yap1 target genes, connective tissue growth factor (CTGF). Our gain-of-function analysis with CTGF suggests CTGF may be the downstream factor of Yap1 in the protective mechanism against FFA-induced apoptosis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis/fisiología , Ácidos Grasos no Esterificados/farmacología , Fosfoproteínas/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Apoptosis/efectos de los fármacos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Línea Celular Tumoral , Factor de Crecimiento del Tejido Conjuntivo/genética , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Factor de Crecimiento del Tejido Conjuntivo/farmacología , Citocalasina D/farmacología , Células HEK293 , Humanos , Inmunohistoquímica , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Ratones , Microscopía Fluorescente , Ácido Palmítico/farmacología , Fosfoproteínas/antagonistas & inhibidores , Fosfoproteínas/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ratas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Tiazolidinas/farmacología , Factores de Transcripción , Proteínas Señalizadoras YAP
12.
Protein Cell ; 6(1): 6-11, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25482410

RESUMEN

In recent years, human cancer genome projects provide unprecedented opportunities for the discovery of cancer genes and signaling pathways that contribute to tumor development. While numerous gene mutations can be identified from each cancer genome, what these mutations mean for cancer is a challenging question to address, especially for those from less understood putative new cancer genes. As a powerful approach, in silico bioinformatics analysis could efficiently sort out mutations that are predicted to damage gene function. Such an analysis of human large tumor suppressor genes, LATS1 and LATS2, has been carried out and the results support a role of hLATS1//2 as negative growth regulators and tumor suppressors.


Asunto(s)
Proteínas Serina-Treonina Quinasas/genética , Proteínas Supresoras de Tumor/genética , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular , Biología Computacional , Genes Relacionados con las Neoplasias , Humanos , Péptidos y Proteínas de Señalización Intracelular , Proteínas con Dominio LIM/química , Proteínas con Dominio LIM/metabolismo , Ratones , Mutación , Neoplasias/genética , Neoplasias/patología , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , Serina-Treonina Quinasa 3 , Transferasas (Grupos de Otros Fosfatos Sustitutos)/química , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/metabolismo , Proteínas Señalizadoras YAP
13.
Protein Cell ; 6(2): 81-7, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25492376

RESUMEN

The loss of or decreased functional pancreatic ß-cell is a major cause of type 1 and type 2 diabetes. Previous studies have shown that adult ß-cells can maintain their ability for a low level of turnover through replication and neogenesis. Thus, a strategy to prevent and treat diabetes would be to enhance the ability of ß-cells to increase the mass of functional ß-cells. Consequently, much effort has been devoted to identify factors that can effectively induce ß-cell expansion. This review focuses on recent reports on small molecules and protein factors that have been shown to promote ß-cell expansion.


Asunto(s)
Proliferación Celular , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/genética , Células Secretoras de Insulina/química , Comunicación Celular/genética , Diferenciación Celular/genética , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 2/patología , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología
14.
Cell Rep ; 5(6): 1650-63, 2013 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-24360964

RESUMEN

Abnormal activation of Wnt/ß-catenin-mediated transcription is associated with a variety of human cancers. Here, we report that LATS2 inhibits oncogenic Wnt/ß-catenin-mediated transcription by disrupting the ß-catenin/BCL9 interaction. LATS2 directly interacts with ß-catenin and is present on Wnt target gene promoters. Mechanistically, LATS2 inhibits the interaction between BCL9 and ß-catenin and subsequent recruitment of BCL9, independent of LATS2 kinase activity. LATS2 is downregulated and inversely correlated with the levels of Wnt target genes in human colorectal cancers. Moreover, nocodazole, an antimicrotubule drug, potently induces LATS2 to suppress tumor growth in vivo by targeting ß-catenin/BCL9. Our results suggest that LATS2 is not only a key tumor suppressor in human cancer but may also be an important target for anticancer therapy.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Proteínas de Neoplasias/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Células HEK293 , Humanos , Unión Proteica , Factores de Transcripción , Transcripción Genética
15.
Protein Cell ; 4(12): 904-10, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24248471

RESUMEN

Hippo signaling plays a crucial role in growth control and tumor suppression by regulating cell proliferation, apoptosis, and differentiation. How Hippo signaling is regulated has been under extensive investigation. Over the past three years, an increasing amount of data have supported a model of actin cytoskeleton blocking Hippo signaling activity to allow nuclear accumulation of a downstream effector, Yki/Yap/Taz. On the other hand, Hippo signaling negatively regulates actin cytoskeleton organization. This review provides insight on the mutual regulatory mechanisms between Hippo signaling and actin cytoskeleton for a tight control of cell behaviors during animal development, and points out outstanding questions for further investigations.


Asunto(s)
Citoesqueleto de Actina/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proliferación Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación de la Expresión Génica , Vía de Señalización Hippo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Proteínas Señalizadoras YAP
16.
Biochem Biophys Res Commun ; 439(4): 438-42, 2013 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-24016667

RESUMEN

The evolutionarily conserved Hippo signaling pathway plays an important role in regulating normal development as well as tumorigenesis in animals. How this growth-inhibitory signaling is maintained at an appropriate level through feedback mechanisms is less understood. In this report, we show that bantam microRNA functions to increase the level of the Mob as tumor suppressor protein Mats, a core component of the Hippo pathway, but does not regulate mats at the transcript level. Genetic analysis also supports that bantam plays a positive role in regulating mats function for tissue growth control. Our data support a model that bantam up-regulates Mats expression through an unidentified factor that may control Mats stability.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila/metabolismo , MicroARNs/genética , Proteínas Supresoras de Tumor/genética , Animales , Drosophila/crecimiento & desarrollo , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , MicroARNs/metabolismo , Transducción de Señal , Proteínas Supresoras de Tumor/metabolismo , Regulación hacia Arriba
17.
Genetics ; 195(3): 1193-6, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24026096

RESUMEN

The role of Large tumor suppressor LATS/Warts in human cancer is not clearly understood. Here we show that hLATS1/2 cancer mutations affect their expression and kinase activity. hLATS1/2 mutants exhibit a decreased activity in inhibiting YAP and tissue growth. Therefore, hLATS1/2 alleles from human cancer can be loss-of-function mutations.


Asunto(s)
Genes Supresores de Tumor , Neoplasias/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Supresoras de Tumor/genética , Animales , Animales Modificados Genéticamente , Drosophila/genética , Drosophila/crecimiento & desarrollo , Femenino , Humanos , Masculino , Modelos Genéticos , Mutación , Interferencia de ARN , Alas de Animales/crecimiento & desarrollo
18.
Genes Dev ; 27(11): 1223-32, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23752589

RESUMEN

The Hippo tumor suppressor pathway plays an important role in tissue homeostasis that ensures development of functional organs at proper size. The YAP transcription coactivator is a major effector of the Hippo pathway and is phosphorylated and inactivated by the Hippo pathway kinases Lats1/2. It has recently been shown that YAP activity is regulated by G-protein-coupled receptor signaling. Here we demonstrate that cyclic adenosine monophosphate (cAMP), a second messenger downstream from Gαs-coupled receptors, acts through protein kinase A (PKA) and Rho GTPases to stimulate Lats kinases and YAP phosphorylation. We also show that inactivation of YAP is crucial for PKA-induced adipogenesis. In addition, PKA activation in Drosophila inhibits the expression of Yorki (Yki, a YAP ortholog) target genes involved in cell proliferation and death. Taken together, our study demonstrates that Hippo-YAP is a key signaling branch of cAMP and PKA and reveals new insight into mechanisms of PKA in regulating a broad range of cellular functions.


Asunto(s)
Diferenciación Celular , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Drosophila/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Aciltransferasas , Adipogénesis , Animales , Línea Celular , Proliferación Celular , AMP Cíclico/metabolismo , Proteínas de Drosophila/antagonistas & inhibidores , Drosophila melanogaster/enzimología , Drosophila melanogaster/metabolismo , Activación Enzimática , Humanos , Ratones , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Fosforilación , Sistemas de Mensajero Secundario/fisiología , Serina-Treonina Quinasa 3 , Transactivadores/antagonistas & inhibidores , Transactivadores/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Señalizadoras YAP , Proteínas de Unión al GTP rho/metabolismo
19.
Dev Biol ; 380(2): 344-50, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23707898

RESUMEN

BRMS1 was first discovered as a human breast carcinoma metastasis suppressor gene. However, the mechanism of BRMS1 in tumor metastasis and its developmental role remain unclear. In this paper, we first report the identification of the Drosophila ortholog of human BRMS1, dBrms1. Through a genetic approach, the role of dBrms1 during development has been investigated. We found that dBrms1 is an essential gene and loss of dBrms1 function results in lethality at early developmental stages. dBrms1mutants displayed phenotypes such as developmental delay and failure to initiate metamorphosis. Further analysis suggests that these phenotypes are contributed by defective ecdysone signaling and expression of target genes of the ecdysone pathway. Therefore, dBrms1 is required for growth control by acting as a modulator of ecdysone signaling in Drosophila and is required for metamorphosis for normal development.


Asunto(s)
Ecdisona/fisiología , Regulación del Desarrollo de la Expresión Génica , Genes Supresores de Tumor , Proteínas de Neoplasias/genética , Animales , Drosophila , Metamorfosis Biológica , Mutación , Proteínas Represoras , Transducción de Señal , Factores de Tiempo , Transgenes
20.
Dev Biol ; 375(2): 152-9, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23298890

RESUMEN

Hippo (Hpo) signaling plays a critical role in restricting tissue growth and organ size in both invertebrate and vertebrate animals. However, how the Hpo kinase is regulated during development has not been clearly understood. Using a Bimolecular Fluorescence Complementation assay, we have investigated the functional significance of Hpo homo-dimer formation and subcellular localization in living cells. We found that Hpo dimerization and membrane association are critical for its activation in growth inhibition. As dimerization facilitates Hpo to access its binding partner, Hpo kinases in the homo-dimer trans-phosphorylate each other to increase their enzymatic activity. Moreover, loss- and gain-of-function studies indicate that upstream regulators, Expanded, Merlin and Kibra, play a critical role in promoting Hpo dimerization as well as association to the cortical F-actin beneath the plasma membrane. Enforced Hpo localization to the plasma membrane increases Hpo dimerization and activity. Therefore, homo-dimerization and plasma membrane association are two important mechanisms for Hpo activation in growth control during animal development.


Asunto(s)
Membrana Celular/enzimología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Drosophila melanogaster/crecimiento & desarrollo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Multimerización de Proteína , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Supervivencia Celular , Drosophila melanogaster/anatomía & histología , Activación Enzimática , Fluorescencia , Genes Dominantes , Mutación , Tamaño de los Órganos , Fosforilación , Unión Proteica , Transporte de Proteínas , Fracciones Subcelulares/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA