Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Foods ; 12(20)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37893739

RESUMEN

The gut microbiota is a complex community of microorganisms that plays a vital role in maintaining overall health, and is comprised of Lactobacillus and Bifidobacterium. The probiotic efficacy and safety of Lacticaseibacillus paracasei and Bifidobacterium breve for consumption were confirmed by in vitro experiments. The survival rate of the probiotics showed a significant decline in in vitro gut tract simulation; however, the survival rate was more than 50%. Also, the probiotics could adhere to Caco-2 cell lines by more than 90%, inhibit the pathogenic growths, deconjugate glycocholic acid and taurodeoxycholic acid through activity of bile salt hydrolase (BSH) proteins, and lower cholesterol levels by over 46%. Regarding safety assessment, L. paracasei and B. breve showed susceptibility to some antibiotics but resistance to vancomycin and were examined as γ-hemolytic strains. Anti-inflammatory properties of B. breve with Caco-2 epithelial cell lines showed the significantly highest value (p < 0.05) for interleukin-10. Furthermore, probiotics and prebiotics (inulin, fructooligosaccharides, and galactooligosaccharides) comprise synbiotics, which have potential effects on the increased abundance of beneficial microbiota, but do not affect the growth of harmful bacteria in feces samples. Moreover, the highest concentration of short chain fatty acid was of acetic acid, followed by propionic and butyric acid.

2.
Foods ; 12(10)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37238871

RESUMEN

A low piperine fractional Piper nigrum extract (PFPE) was prepared by mixing cold-pressed coconut oil and honey in distilled water, namely, PFPE-CH. In this study, PFPE-CH was orally administered as a dietary supplement to decrease the risk of tumor formation and reduce the side effects of chemotherapeutic drugs during breast cancer treatment. The toxicity study demonstrated no mortality or adverse effects after administrating PFPE-CH at 5000 mg/kg during a 14-day observation period. Additionally, PFPE-CH at 86 mg/kg BW/day did not cause any harm to the kidney or liver function of the rats for six months. In a cancer prevention study, treatment with PFPE-CH at 100 mg/kg BW for 101 days induced oxidative stress and increased the immune response by altering the levels of cancer-associated cytokines (IL-4, IL-6, and IFN-g), leading to a reduction in the tumor incidence of up to 71.4% without any adverse effects. In combination with doxorubicin, PFPE-CH did not disrupt the anticancer effects of the drug in rats with mammary tumors. Surprisingly, PFPE-CH reduced chemotherapy-induced toxicity by improving some hematological and biochemical parameters. Therefore, our results suggest that PFPE-CH is safe and effective in reducing breast tumor incidence and toxicity of chemotherapeutic drugs during cancer treatment in mammary tumor rats.

3.
Pharmaceuticals (Basel) ; 16(5)2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37242478

RESUMEN

Type 2 diabetes mellitus (T2DM) is one of the most highly prevalent metabolic disorders worldwide. Uncontrolled T2DM can lead to other health threats such as cardiac arrest, lower-limb amputation, blindness, stroke, impaired kidney function, and microvascular and macrovascular complications. Many studies have demonstrated the association between gut microbiota and diabetes development and probiotic supplementation in improving glycemic properties in T2DM. The study aimed to evaluate the influence of Bifidobacterium breve supplementation on glycemic control, lipid profile, and microbiome of T2DM subjects. Forty participants were randomly divided into two groups, and they received probiotics (50 × 109 CFU/day) or placebo interventions (corn starch; 10 mg/day) for 12 weeks. The changes in the blood-urea nitrogen (BUN), aspartate aminotransferase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), fasting blood sugar (FBS), glycated hemoglobin (HbA1c), total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL), low-density lipoprotein (LDL), creatinine levels, and other factors such as body-mass index, visceral fat, body fat, and body weight were assessed at baseline and after 12 weeks. B. breve supplementation significantly reduced BUN, creatinine, LDL, TG, and HbA1c levels compared to the placebo group. Significant changes were observed in the microbiome of the probiotic-treated group compared to the placebo group. Firmicutes and proteobacteria were predominant in the placebo and probiotic-treated groups. Genera Streptococcus, Butyricicoccus, and species Eubacterium hallii were significantly reduced in the probiotic-treated group compared to the placebo. Overall results suggested that B. breve supplementation could prevent worsening of representative clinical parameters in T2DM subjects. The current study has limitations, including fewer subjects, a single probiotic strain, and fewer metagenomic samples for microbiome analysis. Therefore, the results of the current study require further validation using more experimental subjects.

4.
Foods ; 12(8)2023 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-37107386

RESUMEN

Prebiotics have become an important functional food because of their potential for modulating the gut microbiota and metabolic activities. However, different prebiotics can stimulate the growth of different probiotics. The optimization of prebiotics was focused on in this study in order to stimulate the representative probiotics' growth (Lacticaseibacillus rhamnosus (previously Lactobacillus rhamnosus) and Bifidobacterium animalis subsp. lactis) and their function. The culture medium was supplemented with three prebiotics, including inulin (INU), fructooligosaccharides (FOS), and galactooligosaccharides (GOS). All prebiotics can clearly stimulate the growth of probiotic strains in both monoculture and co-culture. The specific growth rates of L. rhamnosus and B. animalis subsp. lactis were shown in GOS (0.019 h-1) and FOS (0.023 h-1), respectively. The prebiotic index (PI) scores of INU (1.03), FOS (0.86), and GOS (0.84) in co-culture at 48 h were significantly higher than the control (glucose). The mixture of prebiotics to achieve high quality was optimized using the Box-Behnken design. The optimum prebiotic ratios of INU, FOS, and GOS were 1.33, 2.00, and 2.67% w/v, respectively, with the highest stimulated growth of probiotic strains occurring with the highest PI score (1.03) and total short chain fatty acid concentration (85.55 µmol/mL). The suitable ratio of mixed prebiotics will function as a potential ingredient for functional foods or colonic foods.

5.
Biomolecules ; 12(8)2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-36008962

RESUMEN

Diabetic nephropathy is currently the leading cause of end-stage renal disease (ESRD) in type 2 diabetes. Studies have suggested that supplementation with some fatty acids might reduce the risk and delay the progression to ESRD in patient with chronic kidney disease. Crocodile oil (CO) contains a variety of fatty acids, especially omega-3, -6 and -9, that have been reported to be beneficial to human health. This study examined the impact of long-term CO supplementation on the development of diabetic nephropathy in spontaneously diabetic Torii (SDT) rats. After diabetic verification, SDT rats were assigned to receive vehicle or CO at 500 and 1000 mg/kg BW, respectively, by oral gavage. Age-matched nondiabetic Sprague-Dawley rats were given vehicle or high-dose CO. After 28 weeks of intervention, CO failed to improve hyperglycemia and pancreatic histopathological changes in SDT rats. Unexpectedly, CO dose-dependently exacerbated the impairment of kidney and mitochondrial functions caused by diabetes. CO also disturbed the expressions of proteins involved in mitochondrial biogenesis, dynamics, and mitophagy. However, no significant alterations were observed in nondiabetic rats receiving high-dose CO. The findings reveal that CO has deleterious effects that aggravate diabetic kidney injury via disrupting mitochondrial homeostasis, possibly due to its improper omega-6: omega-3 ratio.


Asunto(s)
Caimanes y Cocodrilos , Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Fallo Renal Crónico , Animales , Diabetes Mellitus Tipo 2/metabolismo , Nefropatías Diabéticas/metabolismo , Modelos Animales de Enfermedad , Ácidos Grasos , Homeostasis , Humanos , Riñón/metabolismo , Fallo Renal Crónico/patología , Ratas , Ratas Sprague-Dawley
6.
Molecules ; 27(12)2022 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-35744910

RESUMEN

Crocodile oil (CO) is generated from the fatty tissues of crocodiles as a by-product of commercial aquaculture. CO is extensively applied in the treatment of illnesses including asthma, emphysema, skin ulcers, and cancer, as well as wound healing. Whether CO has anti-inflammatory properties and encourages an immune response remains uncertain. The impact of CO on inflammatory conditions in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and the mechanisms behind it were examined in this work. Cells were treated with 0.125-2% CO dissolved in 0.5% propylene glycol with or without LPS. The production and expression of inflammatory cytokines and mediators were also examined in this research. CO reduced the synthesis and gene expression of interleukin-6 (IL-6). Consistently, CO inhibited the expression and synthesis of inflammatory markers including cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), nitric oxide (NO), and nuclear factor kappa B (NF-κB). Furthermore, CO reduced the effects of DNA damage. CO also increased the cell-cycle regulators, cyclins D2 and E2, which improved the immunological response. CO might thus be produced as a nutraceutical supplement to help avoid inflammatory diseases.


Asunto(s)
Caimanes y Cocodrilos , Lipopolisacáridos , Animales , Ciclooxigenasa 2/metabolismo , Inmunidad , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Macrófagos , Ratones , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Aceites , Células RAW 264.7
7.
Foods ; 11(3)2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35159419

RESUMEN

Intestinal integrity prevents the diffusion of allergens, toxins, and pathogens from the gastrointestinal lumen into the tissue and the circulatory system. Damage in intestinal integrity may cause mild to serious health issues, such as inflammation, gastrointestinal disorders, neurological diseases, and neurodegenerative disorders. Thus, maintaining a healthy intestinal barrier function is essential to sustain health. Probiotics are known for their ability to protect and restore intestinal permeability in vitro and in vivo. The multi-strain probiotics are more efficient than that of a single strain in terms of their protective efficacy. Therefore, the present study was planned and implemented to study the supplementation of probiotic mix (Lactobacillus paracasei HII01, Bifidobacteriumbreve, and Bifidobacterium longum) on intestinal permeability, lipid profile, obesity index and metabolic biomarkers in elderly Thai subjects. The results revealed that the supplementation of studied probiotics improved the intestinal barrier function (up to 48%), significantly increasing the high-density lipoprotein (HDL)-cholesterol. Moreover, the intervention improved obesity-related anthropometric biomarkers and short-chain fatty acid levels in human subjects. The current study strongly recommends further extended research to confirm the beneficial effect of probiotics, which may pave the way to formulate probiotic-based health supplements to adjuvant the treatment of several metabolic diseases.

8.
Molecules ; 26(19)2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34641278

RESUMEN

BACKGROUND: Caulerpa lentillifera (CL) is a green seaweed, and its edible part represents added value as a functional ingredient. CL was dried and extracted for the determination of its active compounds and the evaluation of its biological activities. The major constituents of CL extract (CLE), including tannic acid, catechin, rutin, and isoquercetin, exhibited beneficial effects, such as antioxidant activity, anti-diabetic activity, immunomodulatory effects, and anti-cancer activities in in vitro and in vivo models. Whether CLE has an anti-inflammatory effect and immune response remains unclear. METHODS: This study examined the effect of CLE on the inflammatory status and immune response of lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and the mechanisms involved therein. RAW264.7 cells were treated with different concentrations of CLE (0.1-1000 µg/mL) with or without LPS (1 µg/mL) for 24 h. Expression and production of the inflammatory cytokines, enzymes, and mediators were evaluated. RESULTS: CLE suppressed expression and production of the pro-inflammatory cytokines IL-6 and TNF-α. Moreover, CLE inhibited expression and secretion of the inflammatory enzyme COX-2 and the mediators PGE2 and NO. CLE also reduced DNA damage. Furthermore, CLE stimulated the immune response by modulating the cell cycle regulators p27, p53, cyclin D2, and cyclin E2. CONCLUSIONS: CLE inhibits inflammatory responses in LPS-activated macrophages by downregulating inflammatory cytokines and mediators. Furthermore, CLE has an immunomodulatory effect by modulating cell cycle regulators.


Asunto(s)
Antiinflamatorios/farmacología , Catequina/farmacología , Caulerpa/química , Quercetina/análogos & derivados , Rutina/farmacología , Taninos/farmacología , Animales , Catequina/aislamiento & purificación , Citocinas/genética , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Inmunidad/efectos de los fármacos , Lipopolisacáridos/efectos adversos , Ratones , Quercetina/aislamiento & purificación , Quercetina/farmacología , Células RAW 264.7 , Rutina/aislamiento & purificación , Taninos/aislamiento & purificación
9.
Exp Ther Med ; 22(5): 1223, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34603520

RESUMEN

The present study assessed the effect of freshwater hybrid catfish oil (FFO) on the inflammatory status of lipopolysaccharide (LPS)-stimulated RAW264.7 cells and investigated the underlying mechanisms. RAW264.7 cells were supplemented with various concentrations [0.125-2% in 0.5% propylene glycol (v/v)] of FFO with or without LPS (1 µg/ml) for 24 h. Inflammatory cytokines and mediators were quantified using ELISA and reverse transcription-quantitative PCR. The results revealed that FFO treatment inhibited the secretion and mRNA expression of the pro-inflammatory cytokines IL-6, IL-1ß, TNF-α. In line with this, FFO suppressed the expression and secretion of the inflammatory mediators cyclooxygenase-2 and prostaglandin E2. FFO also reduced apoptotic body formation and DNA damage. Correspondingly, FFO enhanced the immune response by modulating the cell cycle regulators p53, cyclin D2 and cyclin E2. Accordingly, FFO may be developed as a nutraceutical product to prevent inflammation.

10.
Biomolecules ; 11(8)2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34439892

RESUMEN

Diabetic nephropathy (DN) is the primary cause of end-stage renal disease worldwide. Oxidative stress and mitochondrial dysfunction are central to its pathogenesis. Rice husk, the leftover from the milling process, is a good source of phytochemicals with antioxidant activity. This study evaluated the possible protection of purple rice husk extract (PRHE) against diabetic kidney injury. Type 2 diabetic rats were given vehicle, PRHE, metformin, and PRHE+metformin, respectively, while nondiabetic rats received vehicle. After 12 weeks, diabetic rats developed nephropathy as proven by metabolic alterations (increased blood glucose, insulin, HOMA-IR, triglycerides, cholesterol) and renal abnormalities (podocyte injury, microalbuminuria, increased serum creatinine, decreased creatinine clearance). Treatment with PRHE, metformin, or combination diminished these changes, improved mitochondrial function (decreased mitochondrial swelling, reactive oxygen species production, membrane potential changes), and reduced renal oxidative damage (decreased lipid peroxidation and increased antioxidants). Increased expression of PGC-1α, SIRT3, and SOD2 and decreased expression of Ac-SOD2 correlated with the beneficial outcomes. HPLC revealed protocatechuic acid and cyanidin-3-glucoside as the key components of PRHE. The findings indicate that PRHE effectively protects against the development of DN by retaining mitochondrial redox equilibrium via the regulation of PGC-1α-SIRT3-SOD2 signaling. This study creates an opportunity to develop this agricultural waste into a useful health product for diabetes.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Nefropatías Diabéticas/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Oryza/metabolismo , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Animales , Antioxidantes/farmacología , Masculino , Oxidación-Reducción , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Ratas , Ratas Wistar , Sirtuinas/metabolismo , Superóxido Dismutasa/metabolismo
11.
Foods ; 10(7)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201653

RESUMEN

It has been shown that gut dysbiosis can be associated with the development of type 2 diabetes mellitus (T2DM). Consequently, intervention with probiotics may be a useful approach to improve metabolic variables in diabetes. The present study aimed to evaluate the efficacy of L. paracasei HII01 on glycemia in T2DM patients. In a randomized, double-blind, placebo-controlled study, 50 participants were allocated to receive L. paracasei HII01 (50 × 109 CFU/day) or a placebo (corn starch 10 mg/day). Blood and fecal samples were assessed at baseline and at the end of the trial. After 12 weeks of intervention, fasting blood glucose level had significantly decreased in the probiotic group compared with the placebo group. Importantly, probiotic supplementation significantly decreased the plasma levels of LPS, TNF-α, IL-6 and hsCRP compared the placebo group. Additionally, an increase in beneficial bacteria and a decrease in pathogenic bacteria, which related to the improvement of SCFAs, was found following L. paracasei HII01 supplementation. These findings demonstrated that L. paracasei HII01 improved hyperglycemia and inflammatory markers by favorably modifying gut microbiota and subsequently ameliorating the leaky gut and endotoxemia, thereby suggesting a potential role as an adjuvant treatment in type 2 diabetes.

12.
Nutrients ; 12(10)2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33019697

RESUMEN

Despite the updated knowledge of the impact of gut dysbiosis on diabetes, investigations into the beneficial effects of individual bacteria are still required. This study evaluates the antihyperglycemic efficacy of Lactobacillus paracasei HII01 and its possible mechanisms in diabetic rats. Diabetic rats were assigned to receive vehicle, L. paracasei HII01 (108 CFU/day), metformin 30 (mg/kg) or a combination of L. paracasei HII01 and metformin. Normal rats given vehicle and L. paracasei HII01 were included. Metabolic parameters, including in vitro hemi-diaphragm glucose uptake, skeletal insulin-signaling proteins, plasma lipopolysaccharide (LPS), gut permeability, composition of gut microbiota and its metabolites, as well as short-chain fatty acids (SCFAs), were assessed after 12 weeks of experiment. The results clearly demonstrated that L. paracasei HII01 improved glycemic parameters, glucose uptake, insulin-signaling proteins including pAktSer473, glucose transporter 4 (GLUT4) and phosphorylation of AMP-activated protein kinase (pAMPKThr172), tumor necrosis factor (TNF-α) and nuclear factor-κB (NF-kB) in diabetic rats. Modulation of gut microbiota was found together with improvement in leaky gut, endotoxemia and SCFAs in diabetic rats administered L. paracasei HII01. In conclusion, L. paracasei HII01 alleviated hyperglycemia in diabetic rats primarily by modulating gut microbiota along with lessening leaky gut, leading to improvement in endotoxemia and inflammation-disturbed insulin signaling, which was mediated partly by PI3K/Akt signaling and AMPK activation.


Asunto(s)
Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 2/terapia , Microbioma Gastrointestinal/fisiología , Hipoglucemiantes/administración & dosificación , Lacticaseibacillus paracasei/fisiología , Adipoquinas/sangre , Animales , Glucemia/análisis , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Tipo 2/sangre , Endotoxemia/sangre , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Lípidos/sangre , Masculino , Metformina/administración & dosificación , Músculo Esquelético/metabolismo , Probióticos/administración & dosificación , Ratas , Ratas Wistar
13.
Eur J Pharmacol ; 882: 173311, 2020 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-32619673

RESUMEN

Natural and synthetic (-)-kusunokinin inhibited breast cancer, colon cancer and cholangiocarcinoma cells at the G2/M phase and induced apoptosis. However, there is no report on the action and adverse effects of (-)-kusunokinin in animal models. In this study, we investigated the cytotoxic effect of (-)-kusunokinin from Piper nigrum on cancer cells. NMU-induced rat mammary tumors, an ER positive breast cancer model, were treated with (-)-kusunokinin. Proteins of interest related to cell cycle, angiogenesis, migration and signaling proteins were detected in tumor tissues. Results showed that (-)-kusunokinin exhibited strong cytotoxicity against breast, colon and lung cancer cells and caused low toxicity against normal fibroblast cells. For in vivo study, 7.0 mg/kg and 14.0 mg/kg of (-)-kusunokinin reduced tumor growth without side effects on body weight, internal organs and bone marrow. Combination of (-)-kusunokinin with a low effective dose of doxorubicin significantly inhibited tumor growth and provoked cell death in cancer tissues. Mechanistically, 14.0 mg/kg of (-)-kusunokinin decreased cell proliferation (c-Src, PI3K, Akt, p-Erk1/2 and c-Myc), cell cycle (E2f-1, cyclin B1 and CDK1), and metastasis (E-cadherin, MMP-2 and MMP-9) proteins in tumor tissues, which supports its anticancer effect. We further confirmed the antimigration effect of (-)-kusunokinin; the results show that this compound inhibited breast cancer cell (MCF-7) migration in a dose-dependent manner. In conclusion, the results suggest that 14 mg/kg of (-)-kusunokinin inhibited tumors through the reduction of signaling proteins and their downstream molecules. Therefore, (-)-kusunokinin becomes an intriguing candidate for cancer treatment as it provides a strong potency in cancer inhibition.


Asunto(s)
Antineoplásicos/uso terapéutico , Lignanos/uso terapéutico , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Humanos , Lignanos/farmacología , Neoplasias Mamarias Experimentales/inducido químicamente , Neoplasias Mamarias Experimentales/patología , Metilnitrosourea , Ratas Sprague-Dawley
14.
Food Sci Nutr ; 8(1): 428-444, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31993169

RESUMEN

Rice husk (RH) is an agricultural waste obtained from rice milling process. Our previous study demonstrated the optimized process of extracting xylooligosaccharides (XOS), a prebiotic that can support the growth and activity of beneficial gut microbiota, from RH. Accumulated evidences indicate that the composition of gut microbiota is involved in the progression of insulin resistance and diabetes. This study aims to evaluate the antihyperglycemic effect and putative mechanisms of RH-XOS using a diabetic rat model induced by high-fat diet and streptozotocin injection. Diabetic rats were randomly assigned to receive vehicle (DMC), XOS (DM-XOS), metformin (DMM), and a combination of XOS and metformin (DMM-XOS). An additional group of rats were fed with normal diet plus vehicle (NDC) and normal diet plus XOS (ND-XOS). Supplementation with RH-XOS for 12 weeks successfully decreased the fasting plasma glucose, insulin, leptin, and LPS levels in DM-XOS compared with DMC. Likewise, the insulin-stimulated glucose uptake assessed by in vitro study was significantly enhanced in DM-XOS, DMM, and DMM-XOS. The diminished protein expressions of GLUT4 and pAktSer473 as well as pAMPKThr172 were significantly modulated in DM-XOS, DMM, and DMM-XOS groups. Interestingly, RH-XOS supplementation reversed the changed gut permeability, elevated the number of beneficial bacteria, both Lactobacillus and Bifidobacterium spp., and increased SCFAs production. Taken together, the results confirm the efficacy of RH-XOS in achieving good glycemic control in diabetes by maintenance of gut microbiota and attenuation of endotoxemia. The findings reveal the benefits of RH-XOS and open an opportunity to improve its value by its development as a nutraceutical for diabetes.

15.
AMB Express ; 8(1): 115, 2018 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-30014174

RESUMEN

Rice husk (RH) is the major agricultural waste obtained during rice hulling process, which can be a sustainable source of xylooligosaccharide (XOS). The current study deals with the production of XOS from Thai rice husk using alkaline pretreatment and enzyme hydrolysis method. The response surface methodology consisted of central composite design and Box-Behnken design was employed to achieve the maximum response in alkaline pretreatment and XOS production, respectively. The optimum conditions for alkaline pretreatment to recover maximum xylan yield were 12-18% of alkaline concentration, the temperature at 110-120 °C, and steaming time for 37.5-40 min. The FTIR results suggested that the extracted sample was the xylan fraction. The maximum XOS production of 17.35 ± 0.31 mg XOS per mL xylan was observed in the run conditions of 6.25 mg enzyme per g xylan, 9 h of incubation time, and 5% of xylan. The results revealed that the xylan extracted from RH by using an effective base couple with the steam application and the enzymatic hydrolysis help to maximize the yield of XOS, which can be further used in functional foods and dietary supplements.

16.
J Evid Based Integr Med ; 23: 2515690X18765699, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29619846

RESUMEN

The current study investigated the antidiabetic property of Lactobacillus fermentum HP3-mediated fermented Hericium erinaceus juice (FHJ) using male Wistar rats with streptozotocin-induced diabetes mellitus (DM). FHJ was prepared using boiled mushroom juice and L. fermentum HP3. Amino acid and γ-aminobutyric acid (GABA) content of FHJ was analyzed. Streptozotocin-induced DM rats were supplemented with FHJ in a pre- and posttreatment method. The changes in plasma insulin, plasma glucose level, glycated hemoglobin (HbA1c), representative cytokines, and the antioxidant system were assessed in experimental rats using spectrophotometric methods and enzyme-linked immunosorbent assay. The supplementation of FHJ improved the body mass, insulin level, and recovery progress of hyperglycemia. HbA1c level was altered by the FHJ intervention. The inflammatory cytokines level was suppressed in FHJ supplemented group compared with control. Intervention of FHJ and insulin improved the production of interleukin-10 and transforming growth factor--ß1 in DM rat. The study suggested that fermented H erinaceus juice may be used as one of the food-based health-promoting supplement to manage DM along with medication.

17.
Avicenna J Phytomed ; 7(2): 101-107, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28348965

RESUMEN

OBJECTIVE: Stevioside is a natural non-caloric sweetener which has been reported to have anti-inflammatory activity. The aim of the present study was to examine in vitro and in vivo effects of stevioside on rats plasma levels of tumor necrosis factor- α (TNF-α), interleukin-1ß (IL-1ß), TNF-α and IL-1ß release from lipopolysaccharide(LPS)-stimulated rat peripheral blood mononuclear cells (PBMCs). MATERIALS AND METHODS: Male wistar rats weighing between 170-220 g were given stevioside (0, 500 and 1000 mg/kg BW/day) for 6 weeks. Mononuclear cells were separated from peripheral blood samples. TNF-α and IL-1ß levels in plasma and the release of TNF-α and IL-1ß from PBMCs were determined using rat enzyme-linked immunosorbent assay (ELISA) kits. RESULTS: Plasma levels of TNF-α and IL-1ß were found to be non-detectable in control and groups treated with 500 and 1000 mg/kg of stevioside. Regarding TNF-α release from LPS-stimulated PBMCs, rats that were orally fed with 500 and 1000 mg/kg of stevioside were significantly different (p<0.05) from those in LPS-treated control group (186.8+18.6 and 151.4 + 15.4 vs 248.6+21.4 pg/ml). Additionally, IL-1ß levels in rats treated with 500 and 1000 mg/kg of stevioside were significantly different (p<0.05) from those in LPS-treated control group (220.0+12.1 and 158.1 + 22.6 vs 294.4+16.1 pg/ml). CONCLUSION: Consumption of stevioside has an inhibitory effect on the release of TNF-α and IL-1ß from LPS-stimulated PBMCs in rats.

18.
Pharmaceuticals (Basel) ; 10(1)2016 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-28036014

RESUMEN

Background: Diabetes mellitus (DM), particularly type 2 DM (T2DM), is one of the most common metabolic disorder worldwide. The prevention measures and treatment strategies for DM are improving steadily. The current study explains the impact of germination on phytochemical content of Thai black rice (BR), and the influence of germinated BR extract (GBRE) supplementation on diabetic conditions in rats. Methods: BR was germinated and the phenolic, anthocyanin, and γ-aminobutyric acid (GABA) content of the extract were analyzed using HPLC and spectrophotometric methods. Streptozotocin-induced diabetic rats were supplemented with high and low doses of GBRE. The plasma glucose, insulin, cholesterol, triglyceride levels, antioxidant status, and antioxidant enzyme levels of treated animals were assessed using ELISA and spectrophotometric methods. Results: Germination enhanced the GABA content of BR, and GBRE intervention improved the total antioxidant capacity and antioxidant enzymes levels in diabetic rats. The plasma glucose, cholesterol, triglyceride levels, insulin resistance and glucose tolerance were reduced, and the degree of insulin secretion in rat plasma was significantly increased upon GBRE treatment. Both pre and post-treatment approaches showed the anti-diabetic ability of GBRE. In most of the analyzed parameters, GBRE was quite equal to the performance of drug-metformin. Conclusions: GBRE supplementation helps prevent and manage the consequences of DM.

19.
Korean J Physiol Pharmacol ; 20(6): 581-593, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27847435

RESUMEN

The advantages of monounsaturated fatty acids (MUFAs) on insulin resistance and type 2 diabetes mellitus (T2DM) have been well established. However, the molecular mechanisms of the anti-diabetic action of MUFAs remain unclear. This study examined the anti-hyperglycemic effect and explored the molecular mechanisms involved in the actions of fish oil- rich in MUFAs that had been acquired from hybrid catfish (Pangasius larnaudii×Pangasianodon hypophthalmus) among experimental type 2 diabetic rats. Diabetic rats that were fed with fish oil (500 and 1,000 mg/kg BW) for 12 weeks significantly reduced the fasting plasma glucose levels without increasing the plasma insulin levels. The diminishing levels of plasma lipids and the muscle triglyceride accumulation as well as the plasma leptin levels were identified in T2DM rats, which had been administrated with fish oil. Notably, the plasma adiponectin levels increased among these rats. The fish oil supplementation also improved glucose tolerance, insulin sensitivity and pancreatic histological changes. Moreover, the supplementation of fish oil improved insulin signaling (p-AktSer473 and p-PKC-ζ/λThr410/403), p-AMPKThr172 and membrane GLUT4 protein expressions, whereas the protein expressions of pro-inflammatory cytokines (TNF-α and nuclear NF-κB) as well as p-PKC-θThr538 were down regulated in the skeletal muscle. These data indicate that the effects of fish oil-rich in MUFAs in these T2DM rats were partly due to the attenuation of insulin resistance and an improvement in the adipokine imbalance. The mechanisms of the anti-hyperglycemic effect are involved in the improvement of insulin signaling, AMPK activation, GLUT4 translocation and suppression of pro-inflammatory cytokine protein expressions.

20.
Cancer Prev Res (Phila) ; 9(1): 74-82, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26511488

RESUMEN

Piper nigrum (P. nigrum) is commonly used in traditional medicine. This current study aimed to investigate the anticancer and cancer preventive activity of a piperine-free P. nigrum extract (PFPE) against breast cancer cells and N-nitrosomethylurea (NMU)-induced mammary tumorigenesis in rats. The cytotoxic effects and the mechanism of action were investigated in breast cancer cells using the MTT assay and Western blot analysis, respectively. An acute toxicity study was conducted according to the Organization for Economic Co-operation and Development guideline. Female Sprague-Dawley rats with NMU-induced mammary tumors were used in preventive and anticancer studies. The results showed that PFPE inhibited the growth of luminal-like breast cancer cells more so than the basal-like ones by induction of apoptosis. In addition, PFPE exhibited greater selectivity against breast cancer cells than colorectal cancer, lung cancer, and neuroblastoma cells. In an acute toxicity study, a single oral administration of PFPE at a dose of 5,000 mg/kg body weight resulted in no mortality and morbidity during a 14-day observation period. For the cancer preventive study, the incidence of tumor-bearing rats was 10% to 20% in rats treated with PFPE. For the anticancer activity study, the growth rate of tumors in the presence of PFPE-treated groups was much slower when compared with the control and vehicle groups. The extract itself caused no changes to the biochemical and hematologic parameters when compared with the control and vehicle groups. In conclusion, PFPE had a low toxicity and a potent antitumor effect on mammary tumorigenesis in rats.


Asunto(s)
Alcaloides/química , Anticarcinógenos/química , Benzodioxoles/química , Neoplasias Mamarias Experimentales/prevención & control , Piper nigrum/química , Piperidinas/química , Extractos Vegetales/uso terapéutico , Alcamidas Poliinsaturadas/química , Animales , Apoptosis , Peso Corporal , Línea Celular Tumoral , Proliferación Celular , Femenino , Humanos , Células MCF-7 , Neoplasias Mamarias Experimentales/inducido químicamente , Metilnitrosourea , Ratones , Ratones Endogámicos ICR , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...