Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202406299, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38772710

RESUMEN

The extent to which electrophores covalently bridged by a saturated linker are electrochemically independent was investigated considering the charge/spin duality of the electron and functionality of the electrophore as a spin carrier upon reduction. By combining computational modeling with electrochemical experiments, we investigated the mechanism by which tethered electrophores react together within 4,4'-oligo[n]methylene-bipyridinium assemblies (with n = 2 to 5). We show that native dicationic electrophores (redox state Z = +2) are folded prior to electron injection into the system, allowing the emergence of supra-molecular orbitals (supra-MOs) likely to support the process of the reductive s bond formation giving cyclomers. Indeed, for Z = +2, London Dispersion (LD) forces contribute to flatten the potential energy surface such that all-trans and folded conformers are approximately isoenergetic. Then, upon one-electron injection, for radical cations (Z = +1), LD forces significantly stabilize the folded conformers, except for the ethylene derivative deprived of supra-MOs. For radical cations equipped with supra-MOs, the unpaired electron is delocalized over both heterocycles through space. Cyclomer completion (Z = 0) upon the second electron transfer occurs according to the inversion of redox potentials. This mechanism explains why intramolecular reactivity is favored and why pyridinium electrophores are not independent.

2.
Chemistry ; 27(71): 17889-17899, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34761431

RESUMEN

The synergistic functioning of redox-active components that emerges from prototypical 2,2'-di(N-methylpyrid-4-ylium)-1,1'-biphenyl is described. Interestingly, even if a trans conformation of the native assembly is expected, due to electrostatic repulsion between cationic pyridinium units, we demonstrate that cis conformation is equally energy-stabilized on account of a peculiar LUMO (SupLUMO) that develops through space, encompassing the two pyridiniums in a single, made-in-one-piece, electronic entity (superelectrophoric behavior). This SupLUMO emergence, with the cis species as superelectrophore embodiment, originates in a sudden change of electronic structure. This finding is substantiated by insights from solid state (single-crystal X-ray diffraction) and solution (NOE NMR and UV-vis-NIR spectroelectrochemistry) studies, combined with electronic structure computations. Electrochemistry shows that electron transfers are so strongly correlated that two-electron reduction manifests itself as a single-step process with a large potential inversion consistent with inner creation of a carbon-carbon bond (digital simulation). Besides, absence of reductive formation of dimers is a further indication of a preferential intramolecular reactivity determined by the SupLUMO interaction (cis isomer pre-organization). The redox-gated covalent bond, serving as electron reservoir, was studied via atropisomerism of the reduction product (VT NMR study). The overall picture derived from this in-depth study of 2,2'-di(N-methylpyrid-4-ylium)-1,1'-biphenyl proves that trans and cis species are worth considered as intrinsically sharply different, that is, as doubly-electrophoric and singly-superelectrophoric switchable assemblies, beyond conformational isomerism. Most importantly, the through-space-mediated SupLUMO may come in complement of other weak interactions encountered in Supramolecular Chemistry as a tool for the design of electroactive architectures.


Asunto(s)
Electrónica , Cristalografía por Rayos X , Electroquímica , Espectroscopía de Resonancia Magnética , Conformación Molecular
3.
Angew Chem Int Ed Engl ; 60(9): 4732-4739, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33205862

RESUMEN

Environmental control of single-molecule junction evolution and conductance was demonstrated for expanded pyridinium molecules by scanning tunneling microscopy break junction method and interpreted by quantum transport calculations including solvent molecules explicitly. Fully extended and highly conducting molecular junctions prevail in water environment as opposed to short and less conducting junctions formed in non-solvating mesitylene. A theoretical approach correctly models single-molecule conductance values considering the experimental junction length. Most pronounced difference in the molecular junction formation and conductance was identified for a molecule with the highest stabilization energy on the gold substrate confirming the importance of molecule-electrode interactions. Presented concept of tuning conductance through molecule-electrode interactions in the solvent-driven junctions can be used in the development of new molecular electronic devices.

4.
Phys Chem Chem Phys ; 22(36): 20673-20684, 2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32895673

RESUMEN

The triangulenium dyes constitute a family of versatile chromophores whose impressive photo-absorption and emission properties are currently highlighted in numerous novel experimental applications. In this investigation, we provide a comprehensive TDDFT characterization of their spectroscopic properties elucidating the origin of their large and complex absorption and emission vibronic spectra spread over the (whole) visible region. More precisely, by benchmarking the performance of 10 commonly-used exchange-correlation density functionals belonging to different classes of approximation, we develop and validate a computational protocol allowing the accurate modeling of both the position and optical line-shape of their vibrationally-resolved absorption and emission band structures. We find that semilocal approximations provide the best estimate of the structure of the vibronic spectra, however they spuriously and strongly underestimate their position. We finally show that global-hybrid density functionals mixing between 20 and 30% of exact-like exchange are an excellent compromise to get a satisfactory estimate of both of these properties.

5.
J Am Chem Soc ; 142(11): 5162-5176, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32101420

RESUMEN

Molecular-level multielectron handling toward electrical storage is a worthwhile approach to solar energy harvesting. Here, a strategy which uses chemical bonds as electron reservoirs is introduced to demonstrate the new concept of "structronics" (a neologism derived from "structure" and "electronics"). Through this concept, we establish, synthesize, and thoroughly study two multicomponent "super-electrophores": 1,8-dipyridyliumnaphthalene, 2, and its N,N-bridged cyclophane-like analogue, 3. Within both of them, a covalent bond can be formed and subsequently broken electrochemically. These superelectrophores are based on two electrophoric (pyridinium) units that are, on purpose, spatially arranged by a naphthalene scaffold. A key characteristic of 2 and 3 is that they possess a LUMO that develops through space as the result of the interaction between the closely positioned electrophoric units. In the context of electron storage, this "super-LUMO" serves as an empty reservoir, which can be filled by a two-electron reduction, giving rise to an elongated C-C bond or "super-HOMO". Because of its weakened nature, this bond can undergo an electrochemically driven cleavage at a significantly more anodic-yet accessible-potential, thereby restoring the availability of the electron pair (reservoir emptying). In the representative case study of 2, an inversion of potential in both of the two-electron processes of bond formation and bond-cleavage is demonstrated. Overall, the structronic function is characterized by an electrochemical hysteresis and a chemical reversibility. This structronic superelectrophore can be viewed as the three-dimensional counterpart of benchmark methyl viologen (MV).

6.
Photochem Photobiol Sci ; 19(1): 105-113, 2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31930262

RESUMEN

We report on the light-switch behaviour of two head-to-tail expanded bipyridinium species as a function of their interaction with calf thymus DNA and polynucleotides. In particular, both DNA and polynucleotides containing exclusively adenine or guanine moieties quench the luminescence of the fused expanded bipyridinium species. This behaviour has been rationalized demonstrating that a reductive photoinduced electron transfer process takes place involving both adenine or guanine moieties. The charge separated state so produced recombines in the tens of picoseconds. These results could help in designing new organic substrates for application in DNA probing technology and lab on chip-based sensing systems.


Asunto(s)
Sondas de ADN/química , ADN/análisis , Colorantes Fluorescentes/química , Imagen Óptica , Compuestos de Piridinio/química , Animales , Bovinos , Sondas de ADN/síntesis química , Colorantes Fluorescentes/síntesis química , Estructura Molecular , Oxidación-Reducción , Compuestos de Piridinio/síntesis química , Espectroscopía Infrarroja Corta , Rayos Ultravioleta
7.
Inorg Chem ; 58(9): 5807-5817, 2019 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-31017774

RESUMEN

Three new linearly arranged bichromophoric systems 1-3 have been prepared, and their photophysical properties have been studied, taking also advantage of femtosecond pump-probe transient absorption spectroscopy. The three compounds contain the same chromophores, that is a Ru(II)-terpy-like species and a fused expanded bipyridinium (FEBP) unit, separated by three different, variously methylated biphenylene-type bridges. The chromophores have been selected to be selectively addressable, and excitation involving the Ru-based or the FEBP-based dyes results in different excited-state decays. Upon Ru-based excitation at 570 nm, oxidative photoinduced electron transfer (OPET) takes place in 1-3 from the 3MLCT state; however, the charge-separated species does not accumulate, indicating that the charge recombination rate constant exceeds the OPET rate constant. Upon excitation of the organic dye at 400 nm, the FEBP-based 1π-π* level is prepared, which undergoes a series of intercomponent decay events, including (i) electron-exchange energy transfer leading to the MLCT manifold (SS-EnT), which successively decays according to 570 nm excitation, and (ii) reductive photoinduced electron transfer (RPET), leading to the preparation of the charge-separated (CS) state. Reductive PET, involving the FEBP-based singlet state, is much faster than oxidative PET, involving the MLCT triplet state, essentially because of driving force reasons. The rate constant of CR is intermediate between the rate constants of OPET and RPET, and this makes 1-3 capable to selectively read the 400 nm excitation as an active input to prepare the CS state, whereas excitation at wavelengths longer than 480 nm is inefficient to accumulate the CS state. Moreover, intriguing differences between the rate constants of the various processes in 1-3 have been analyzed and interpreted according to the superexchange theory for electron transfer. This allowed us to uncover the role of the electron-transfer and hole-transfer superexchange pathways in promoting the various intercomponent photoinduced decay processes occurring in 1-3.

8.
Langmuir ; 34(22): 6405-6412, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29751731

RESUMEN

Adsorption properties of a series of redox-active expanded pyridinium molecules were studied at an electrified interface by cyclic and alternating current voltammetry methods. It was shown that the adsorbed state can sufficiently block N-pyramidalization of the pyridinium redox center of 2',6'-diphenyl-[4,1':4',4''-terpyridin]-1'-ium tetrafluoroborate (2), leading to a change of the mechanism from a single two-electron-transfer process to stepwise transfer of two electrons. Chemically locked molecules 1, 9-(pyridin-4-yl)benzo[ c]benzo[1,2]quinolizino[3,4,5,6- ija][1,6]naphthyridin-15-ium tetrafluoroborate (ring fusion), and 3, 3,5-dimethyl-2',6'-diphenyl-[4,1':4',4''-terpyridin]-1'-ium tetrafluoroborate (steric hindrance) do not enable N-pyramidalization of the redox center upon electron transfer (ET) and serve as references. It was shown that 1 follows Langmuir-type adsorption around a potential of zero charge and that 1-3 form a close-packed film with some repulsive interactions between individual molecules at potentials where ET takes place. It has been suggested that all three molecules lie flat on the electrode surface, with the lowest free energy of adsorption found for 2. Maximum surface concentration Γ* equal to (1.4 ± 0.1) × 10-10 mol·cm-2 was found for 1, (1.5 ± 0.1) × 10-10 mol·cm-2 for 2, and (1.6 ± 0.1) × 10-10 mol·cm-2 for 3. These findings will help to clarify the role of molecular contacts with conducting substrate in the single-molecule electron-transport measurements of 1-3 during the metal-molecule-metal junction formation process.

9.
J Am Chem Soc ; 137(35): 11349-64, 2015 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-26280907

RESUMEN

A combined electrochemical and theoretical study of a series of pyridinium-based electrophores, consisting of reference N-alkyl-2,4,6-triarylpyridiniums (1-3) and N-aryl-expanded pyridiniums (EPs), i.e. N-aryl-2,4,6-triarylpyridiniums (4-10), is presented with the aim of elucidating multifaceted mechanisms underpinning the complex electrophoric activity of fluxional EP systems. Series 1-10 constitutes a library of model electrophores showing an incremental variation of their composition, charge, and steric hindrance. By kinetic mapping of the first two heterogeneous electron transfers (ETs) of 1-10 and computational mapping, at the density functional theory level, of their electronic and geometrical features in various redox states, it is established that, depending on whether EPs are made of one (4, 5) or two "head-to-tail"-connected pyridinium rings (6-10), the nature of the redox-triggered distortions (when allowed) is different, namely, N-pyramidalization due to hybridization change in the former case versus saddle-shaped distortion originating from conflicting intramolecular interactions in the latter case (8-10). When skeletal relaxations are sterically hampered, zwitterionic states and electron delocalization with quinoidal features are promoted as alternative relaxation modes. It follows that "potential compression" is changed to "potential expansion" (i.e., a further separation of redox potentials) in single-pyridinium EPs (4, 5), whereas "potential inversion" (i.e., single-step two-electron transfer; 8-10) is changed to stepwise ETs of the Weitz type for two-pyridinium EPs (6, 7). Overall, kinetic rate constants not only consistently indicate the most prominent mechanistic aspects of the reduction pathways of EPs, but they are also instrumental in establishing EPs as a unique class of electrophores.

10.
Inorg Chem ; 52(20): 11944-55, 2013 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-24090453

RESUMEN

The synthesis, characterization, redox behavior, and photophysical properties (both at room temperature in fluid solution and at 77 K in rigid matrix) of a series of four new molecular dyads (2-5) containing Ru(II)- or Os(II)-bis(terpyridine) subunits as chromophores and various expanded pyridinium subunits as electron acceptors are reported, along with the reference properties of a formerly reported dyad, 1. The molecular dyads 2-4 have been designed to have their (potentially emissive) triplet metal-to-ligand charge-transfer (MLCT) and charge-separated (CS) states close in energy, so that excited-state equilibration between these levels can take place. Such a situation is not shared by limit cases 1 and 5. For dyad 1, forward photoinduced electron transfer (time constant, 7 ps) and subsequent charge recombination (time constant, 45 ps) are evidenced, while for dyad 5, photoinduced electron transfer is thermodynamically forbidden so that MLCT decays are the only active deactivation processes. As regards 2-4, CS states are formed from MLCT states with time constants of a few dozens of picoseconds. However, for these latter species, such experimental time constants are not due to photoinduced charge separation but are related to the excited-state equilibration times. Comparative analysis of time constants for charge recombination from the CS states based on proper thermodynamic and kinetic models highlighted that, in spite of their apparently affiliated structures, dyads 1-4 do not constitute a homologous series of compounds as far as intercomponent electron transfer processes are concerned.

11.
Chem Commun (Camb) ; 49(82): 9476-8, 2013 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-24013544

RESUMEN

Hetero-tetra-metallic species based on hexanuclear assemblies [((valen)M1)Ln(OH2)2(µM2(CN)8)]2(2-) (Ln = Gd(III), Tb(III); M1 = Cu(II), Ni(II) and M2 = Mo(IV), W(IV)) and co-crystallized mononuclear complexes [M3(tpy)2](2+) (M3 = Ni(II), Ru(II), Os(II)) were identified, fully characterized, and shown to constitute a new class of single-molecule magnets.

12.
J Phys Chem Lett ; 4(6): 1044-50, 2013 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-26291375

RESUMEN

Density functional theory (DFT) and time-dependent DFT are useful computational approaches frequently used in the dye-sensitized solar cell (DSSC) community in order to analyze experimental results and to clarify the elementary processes involved in the working principles of these devices. Indeed, despite these significant contributions, these methods can provide insights that go well beyond a purely descriptive aim, especially when suitable computational approaches and methodologies for interpreting and validating the computational outcomes are developed. In the present contribution, the possibility of using recently developed computational approaches to design and interpret the macroscopic behavior of DSSCs is exemplified by the study of the performances of three new TiO2-based DSSCs making use of organic dyes, all belonging to the expanded pyridinium family.

13.
J Phys Chem A ; 116(30): 7880-91, 2012 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-22724580

RESUMEN

In regard to semirigid donor-spacer-acceptor (D-S-A) dyads devised for photoinduced charge separation and built from an unsaturated spacer, there exists a strategy of design referred to as "geometrical decoupling" that consists in introducing an inner-S twist angle approaching 90° to minimize adverse D/A mutual electronic influence. The present work aims at gaining further insights into the actual impact of the use of bulky substituents (R) of the alkyl type on the electronic structure of spacers (S) of the oligo-p-phenylene type, which can be critical in the functioning of derived dyads. To this end, a series of 12 novel expanded pyridiniums (EPs), regarded as model S-A assemblies, was synthesized and its structural, electronic, and photophysical properties were investigated at both experimental and theoretical levels. These EPs result from the combination of 4 types of pyridinium-based acceptor moieties with the three following types of S subunits connected at position 4 of the pyridinum core: xylyl (X), xylyl-phenyl (XP), and xylyl-tolyl (XT). From comparison of collected data with those already reported for eight other EPs based on the same A components but linked to S fragments of two other types (i.e., phenyl, P, and biphenyl, PP), the following quantitative order in regard to the pivotal S-centered HOMO energy perturbation was derived (sorted by increasing destabilization): P < X ≪ PP ≈< XP ≈< XT. This indicates that spacers (S) are primarily distinguished on the basis of their mono- or biaryl composition and secondarily by their number of methyl substituents (R). The electron-donating inductive contribution of methyl substituents (HOMO destabilization) more than counterbalances the effect of conjugation disruption (HOMO stabilization). This "compensation effect" suggests that mildly electron-withdrawing hindering groups are better suited for "geometrical decoupling", given that high-energy S-centered occupied MOs can assist charge recombination within D-S-A dyads.


Asunto(s)
Técnicas Electroquímicas , Compuestos de Piridinio/química , Cristalografía por Rayos X , Electrones , Modelos Moleculares , Estructura Molecular , Procesos Fotoquímicos , Compuestos de Piridinio/síntesis química , Teoría Cuántica
14.
Inorg Chem ; 51(9): 5342-52, 2012 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-22524304

RESUMEN

A series of linearly arranged donor-spacer-acceptor (D-S-A) systems 1-3, has been prepared and characterized. These dyads combine an Os(II)bis(terpyridine) unit as the photoactivable electron donor (D), a biphenylene (2) or phenylene-xylylene (3) fragment as the spacer (S), and a N-aryl-2,6-diphenylpyridinium electrophore (with aryl = 4-pyridyl or 4-pyridylium in 1 or 2/3, respectively) as the acceptor (A). Their absorption spectra, redox behavior, and luminescence properties (both at 77 K in rigid matrix and at 298 K in fluid solution) have been studied. The electronic structure and spectroscopic properties of a representative compound of the series (i.e., 2) have also been investigated at the theoretical level, performing Density Functional Theory (DFT)-based calculations. Time-dependent transient absorption spectra of 1-3 have also been recorded at room temperature. The results indicate that efficient photoinduced oxidative electron transfer takes place in the D-S-A systems at room temperature in fluid solution, for which rate constants (in the range 4 × 10(8)-2 × 10(10) s(-1)) depend on the driving force of the process and the spacer nature. In all the D-S-A systems, charge recombination is faster than photoinduced charge separation, in spite of the relatively large energy of the D(+)-S-A(-) charge-separated states (between 1.47 and 1.78 eV for the various species), which would suggest that the charge recombination occurs in the Marcus inverted region. Considerations based on superexchange mechanism suggest that the reason for the fast charge recombination is the presence of a virtual D-S(+)-A(-) state at low energy--because of the involvement of the easily oxidizable biphenylene spacer--which is beneficial for charge recombination via superexchange but unsuitable for photoinduced charge separation. To further support the above statement, we prepared a fourth D-S-A species, 4, analogous to 2 but with a (hardly oxidizable) single phenylene fragment serving as the spacer. For such a species, charge recombination (about 3 × 10(10) s(-1)) is slower than photoinduced charge separation (about 1 × 10(11) s(-1)), thereby confirming our suggestions.

15.
J Am Chem Soc ; 134(5): 2691-705, 2012 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-22200401

RESUMEN

Contrary to 4,4'-dipyridinium (i.e., archetypal methyl viologen), which is reduced by two single-electron transfers (stepwise reduction), the 4,1'-dipyridinium isomer (so-called "head-to-tail" isomer) undergoes two electron transfers at apparently the same potential (single-step reduction). A combined theoretical and experimental study has been undertaken to establish that the latter electrochemical behavior, also observed for other polyarylpyridinium electrophores, is due to potential compression originating in a large structural rearrangement. Three series of branched expanded pyridiniums (EPs) were prepared: N-aryl-2,4,6-triphenylpyridiniums (Ar-TP), N-aryl-2,3,4,5,6-pentaphenylpyridiniums (Ar-XP), and N-aryl-3,5-dimethyl-2,4,6-triphenylpyridinium (Ar-DMTP). The intramolecular steric strain was tuned via N-pyridinio aryl group (Ar) phenyl (Ph), 4-pyridyl (Py), and 4-pyridylium (qPy) and their bulky 3,5-dimethyl counterparts, xylyl (Xy), lutidyl (Lu), and lutidylium (qLu), respectively. Ferrocenyl subunits as internal redox references were covalently appended to representative electrophores in order to count the electrons involved in EP-centered reduction processes. Depending on the steric constraint around the N-pyridinio site, the two-electron reduction is single-step (Ar = Ph, Py, qPy) or stepwise (Ar = Xy, Lu, qLu). This steric switching of the potential compression is accurately accounted for by ab initio modeling (Density Functional Theory, DFT) that proposes a mechanism for pyramidalization of the N(pyridinio) atom coupled with reduction. When the hybridization change of this atom is hindered (Ar = Xy, Lu, qLu), the first reduction is a one-electron process. Theory also reveals that the single-step two-electron reduction involves couples of redox isomers (electromers) displaying both the axial geometry of native EPs and the pyramidalized geometry of doubly reduced EPs. This picture is confirmed by a combined UV-vis-NIR spectroelectrochemical and time-dependent DFT study: comparison of in situ spectroelectrochemical data with the calculated electronic transitions makes it possible to both evidence the distortion and identify the predicted electromers, which play decisive roles in the electron-transfer mechanism. Last, this mechanism is further supported by in-depth analysis of the electronic structures of electrophores in their various reduction states (including electromeric forms).


Asunto(s)
Electrones , Polímeros/química , Compuestos de Piridinio/química , Estructura Molecular , Oxidación-Reducción
16.
J Am Chem Soc ; 133(20): 8005-13, 2011 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-21513301

RESUMEN

A step-by-step theoretical protocol based on density functional theory (DFT) and time-dependent DFT at both the molecular and periodic levels is proposed for the design of dye-sensitized solar cell (DSSC) devices including dyes and electrolyte additives. This computational tool is tested with a fused polycyclic pyridinium derivative as a novel dye prototype. First, the UV-vis spectrum of this dye alone is computed, and then the electronic structure of the system with the dye adsorbed on an oxide semiconductor surface is evaluated. The influence of the electrolyte part of the DSSC is investigated by explicitly taking into account the electrolyte molecules co-adsorbed with the dye on the surface. We find that tert-butylpyridine (TBP) reduces the electron injection by a factor of 2, while lithium ion increases this injection by a factor of 2.4. Our stepwise protocol is successfully validated by experimental measurements, which establish that TBP divides the electronic injection by 1.6 whereas Li(+) multiplies this injection by 1.8. This procedure should be useful for molecular engineering in the field of DSSCs, not only as a complement to experimental approaches but also for improving them in terms of time and resource consumption.

17.
J Am Chem Soc ; 132(46): 16700-13, 2010 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-21028900

RESUMEN

The multifaceted potentialities of expanded pyridiniums (EPs), based on one pyridinium core bearing a 4-pyridyl or 4-pyridylium as the N-pyridinio group, are established at both experimental and theoretical levels. Two classes of head-to-tail (htt) EPs were designed, and their first representative elements were synthesized and fully characterized. The branched (B) family is made up of 2,6-diphenyl-4-aryl-1,4'-bipyridin-1-ium (or 1,1'-diium) species, denoted 1B and 2B for monocationic EPs (with aryl = phenyl and biphenyl, respectively) and 1B(Me) and 2B(Me) for related quaternarized dicationic species. The series of fused (F) analogues comprises 9-aryl-benzo[c]benzo[1,2]quinolizino[3,4,5,6-ija][1,6]naphthyridin-15-ium species, denoted 1F and 2F, and their 2,15-diium derivatives referred to as 1F(Me) and 2F(Me). Electrochemistry (in MeCN vs SCE) reveals that branched EPs undergo a single reversible bielectronic reduction at ca. -0.92 V for 1B/2B and -0.59 V for 1B(Me)/2B(Me), whereas pericondensed species show two reversible monoelectronic reductions at ca. -0.83 and -1.59 V for 1F/2F and ca. -0.42 and -1.07 V for 1F(Me)/2F(Me). Regarding electronic absorption features, all htt-EP chromophores show absorptivity in the range of ca. 1-4 × 10(4) M(-1) cm(-1), with red-edge absorptions extending toward 450 and 500 nm (in MeCN) for 2B(Me) and 2F(Me), respectively. These lowest-energy pi-pi* transitions are ascribed to intramolecular charge transfer between the electron-releasing biphenyl group and the htt-bipyridinium electron-withdrawing subsystems. EPs display room-temperature photoemission quantum yields ranging from 10% to 50%, with the exception of 1B, and branched luminophores are characterized by larger Stokes shifts (8000-10 000 cm(-1)) than fused ones. Lastly, a method to predict the efficiency of photobiscyclization of branched EPs into fused ones, based on the analysis of computed difference maps in total electron density for singlet excited states, is proposed.

18.
J Phys Chem A ; 114(32): 8434-43, 2010 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-20701351

RESUMEN

With the aim of getting insights into the peculiar electronic, structural, and photophysical properties of four expanded pyridinium systems of potential use as electron acceptors in supramolecular architectures, their electronic and geometrical structures, at both the ground and the excited states, were investigated by the means of density functional theory (DFT) and time-dependent DFT (TD-DFT). Solvent effects were included by the means of a polarizable continuum model (PCM) at both the ground and the excited states. In particular, the computed photophysical behaviors (absorption and emission) of the fused architectures were compared to those of the respective branched precursors in order to clarify the origin(s) of (i) the extension of their electronic absorption toward the visible region and (ii) the increase of their luminescence quantum yields and red-shifted emission wavelengths experimentally observed. The theoretical insights gained allow for a clear-cut explanation of the different behavior of these systems of interest as electron acceptors and luminophores for more complex supramolecular architectures and opens the route for a joint experimental and theoretical design of new pyridinium-based acceptors.


Asunto(s)
Compuestos de Piridinio/química , Teoría Cuántica , Absorción , Color , Modelos Moleculares , Conformación Molecular , Espectrometría de Fluorescencia
19.
Chemistry ; 16(36): 11047-63, 2010 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-20715195

RESUMEN

This study evaluates the impact of the extension of the π-conjugated system of pyridiniums on their various properties. The molecular scaffold of aryl-substituted expanded pyridiniums (referred to as branched species) can be photochemically bis-cyclized into the corresponding fused polycyclic derivatives (referred to as pericondensed species). The representative 1,2,4,6-tetraphenylpyridinium (1(H)) and 1,2,3,5,6-pentaphenyl-4-(p-tolyl)pyridinium (2(Me)) tetra- and hexa-branched pyridiniums are herein compared with their corresponding pericondensed derivatives, the fully fused 9-phenylbenzo[1,2]quinolizino[3,4,5,6-def]phenanthridinium (1(H)f) and the hitherto unknown hemifused 9-methyl-1,2,3-triphenylbenzo[h]phenanthro[9,10,1-def]isoquinolinium (2(Me)f). Combined solid-state X-ray crystallography and solution NMR experiments showed that stacking interactions are barely efficient when the pericondensed pyridiniums are not appropriately substituted. The electrochemical study revealed that the first reduction process of all the expanded pyridiniums occurs at around -1 V vs. SCE, which indicates that the lowest unoccupied molecular orbital (LUMO) remains essentially localized on the pyridinium core regardless of pericondensation. In contrast, the electronic and photophysical properties are significantly affected on going from branched to pericondensed pyridiniums. Typically, the number of absorption bands increases with extended activity towards the visible region (down to ca. 450 nm in MeCN), whereas emission quantum yields are increased by three orders of magnitude (at ca. 0.25 on average). A relationship is established between the observed differential impact of the pericondensation and the importance of the localized LUMO on the properties considered: predominant for the first reduction process compared with secondary for the optical and photophysical properties.


Asunto(s)
Compuestos Policíclicos/química , Compuestos de Piridinio/química , Cristalografía por Rayos X , Ciclización , Electroquímica , Electrónica , Espectroscopía de Resonancia Magnética , Estructura Molecular
20.
Chem Commun (Camb) ; 46(28): 5169-71, 2010 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-20544073

RESUMEN

Intercalation of small molecules into DNA is photochemically achieved by in situ irradiation of a tetraaryl-pyridinium species. Such a "DNA intercalation on demand" process could highlight an alternative pathway to anticancer basic research, based on photo-activable DNA binders.


Asunto(s)
ADN/química , Sustancias Intercalantes/química , Dicroismo Circular , Procesos Fotoquímicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...