Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
J Neurodev Disord ; 16(1): 23, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720286

RESUMEN

BACKGROUND: Autism spectrum disorder has been linked to a variety of organizational and developmental deviations in the brain. One such organizational difference involves hemispheric lateralization, which may be localized to language-relevant regions of the brain or distributed more broadly. METHODS: In the present study, we estimated brain hemispheric lateralization in autism based on each participant's unique functional neuroanatomy rather than relying on group-averaged data. Additionally, we explored potential relationships between the lateralization of the language network and behavioral phenotypes including verbal ability, language delay, and autism symptom severity. We hypothesized that differences in hemispheric asymmetries in autism would be limited to the language network, with the alternative hypothesis of pervasive differences in lateralization. We tested this and other hypotheses by employing a cross-sectional dataset of 118 individuals (48 autistic, 70 neurotypical). Using resting-state fMRI, we generated individual network parcellations and estimated network asymmetries using a surface area-based approach. A series of multiple regressions were then used to compare network asymmetries for eight significantly lateralized networks between groups. RESULTS: We found significant group differences in lateralization for the left-lateralized Language (d = -0.89), right-lateralized Salience/Ventral Attention-A (d = 0.55), and right-lateralized Control-B (d = 0.51) networks, with the direction of these group differences indicating less asymmetry in autistic males. These differences were robust across different datasets from the same participants. Furthermore, we found that language delay stratified language lateralization, with the greatest group differences in language lateralization occurring between autistic males with language delay and neurotypical individuals. CONCLUSIONS: These findings evidence a complex pattern of functional lateralization differences in autism, extending beyond the Language network to the Salience/Ventral Attention-A and Control-B networks, yet not encompassing all networks, indicating a selective divergence rather than a pervasive one. Moreover, we observed an association between Language network lateralization and language delay in autistic males.


Asunto(s)
Encéfalo , Lateralidad Funcional , Imagen por Resonancia Magnética , Humanos , Masculino , Lateralidad Funcional/fisiología , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Adulto , Adulto Joven , Estudios Transversales , Adolescente , Trastorno del Espectro Autista/fisiopatología , Red Nerviosa/fisiopatología , Red Nerviosa/diagnóstico por imagen , Trastorno Autístico/fisiopatología , Niño , Lenguaje
2.
Front Neurosci ; 17: 1231719, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37829720

RESUMEN

Background: Autism spectrum disorder (ASD) is a neurodevelopmental condition commonly studied in the context of early childhood. As ASD is a life-long condition, understanding the characteristics of brain microstructure from adolescence into adulthood and associations to clinical features is critical for improving outcomes across the lifespan. In the current work, we utilized Tract Based Spatial Statistics (TBSS) and Gray Matter Based Spatial Statistics (GBSS) to examine the white matter (WM) and gray matter (GM) microstructure in neurotypical (NT) and autistic males. Methods: Multi-shell diffusion MRI was acquired from 78 autistic and 81 NT males (12-to-46-years) and fit to the DTI and NODDI diffusion models. TBSS and GBSS were performed to analyze WM and GM microstructure, respectively. General linear models were used to investigate group and age-related group differences. Within the ASD group, relationships between WM and GM microstructure and measures of autistic symptoms were investigated. Results: All dMRI measures were significantly associated with age across WM and GM. Significant group differences were observed across WM and GM. No significant age-by-group interactions were detected. Within the ASD group, positive relationships with WM microstructure were observed with ADOS-2 Calibrated Severity Scores. Conclusion: Using TBSS and GBSS our findings provide new insights into group differences of WM and GM microstructure in autistic males from adolescence into adulthood. Detection of microstructural differences across the lifespan as well as their relationship to the level of autistic symptoms will deepen to our understanding of brain-behavior relationships of ASD and may aid in the improvement of intervention options for autistic adults.

3.
Neuroimage Clin ; 37: 103306, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36587584

RESUMEN

BACKGROUND: Autism spectrum disorder (ASD) is a complex neurodevelopmental condition. Understanding the brain's microstructure and its relationship to clinical characteristics is important to advance our understanding of the neural supports underlying ASD. In the current work, we implemented Gray-Matter Based Spatial Statistics (GBSS) to examine and characterize cortical microstructure and assess differences between typically developing (TD) and autistic males. METHODS: A multi-shell diffusion MRI (dMRI) protocol was acquired from 83 TD and 70 autistic males (5-to-21-years) and fit to the DTI and NODDI models. GBSS was performed for voxelwise analysis of cortical gray matter (GM). General linear models were used to investigate group differences, while age-by-group interactions assessed age-related differences between groups. Within the ASD group, relationships between cortical microstructure and measures of autistic symptoms were investigated. RESULTS: All dMRI measures were significantly associated with age across the GM skeleton. Group differences and age-by-group interactions are reported. Group-wise increases in neurite density in autistic individuals were observed across frontal, temporal, and occipital regions of the right hemisphere. Significant age-by-group interactions of neurite density were observed within the middle frontal gyrus, precentral gyrus, and frontal pole. Negative relationships between neurite dispersion and the ADOS-2 Calibrated Severity Scores (CSS) were observed within the ASD group. DISCUSSION: Findings demonstrate group and age-related differences between groups in neurite density in ASD across right-hemisphere brain regions supporting cognitive processes. Results provide evidence of altered neurodevelopmental processes affecting GM microstructure in autistic males with implications for the role of cortical microstructure in the level of autistic symptoms. CONCLUSION: Using dMRI and GBSS, our findings provide new insights into group and age-related differences of the GM microstructure in autistic males. Defining where and when these cortical GM differences arise will contribute to our understanding of brain-behavior relationships of ASD and may aid in the development and monitoring of targeted and individualized interventions.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Almidón Sintasa , Sustancia Blanca , Masculino , Humanos , Sustancia Gris/diagnóstico por imagen , Trastorno Autístico/diagnóstico por imagen , Trastorno del Espectro Autista/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen
4.
bioRxiv ; 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38187671

RESUMEN

Background: Autism spectrum disorder has been linked to a variety of organizational and developmental deviations in the brain. One such organizational difference involves hemispheric lateralization, which may be localized to language-relevant regions of the brain or distributed more broadly. Methods: In the present study, we estimated brain hemispheric lateralization in autism based on each participant's unique functional neuroanatomy rather than relying on group-averaged data. Additionally, we explored potential relationships between the lateralization of the language network and behavioral phenotypes including verbal ability, language delay, and autism symptom severity. We hypothesized that differences in hemispheric asymmetries in autism would be limited to the language network, with the alternative hypothesis of pervasive differences in lateralization. We tested this and other hypotheses by employing a cross-sectional dataset of 118 individuals (48 autistic, 70 neurotypical). Using resting-state fMRI, we generated individual network parcellations and estimated network asymmetries using a surface area-based approach. A series of multiple regressions were then used to compare network asymmetries for eight significantly lateralized networks between groups. Results: We found significant group differences in lateralization for the left-lateralized Language (d = -0.89), right-lateralized Salience/Ventral Attention-A (d = 0.55), and right-lateralized Control-B (d = 0.51) networks, with the direction of these group differences indicating less asymmetry in autistic individuals. These differences were robust across different datasets from the same participants. Furthermore, we found that language delay stratified language lateralization, with the greatest group differences in language lateralization occurring between autistic individuals with language delay and neurotypical individuals. Limitations: The generalizability of our findings is restricted due to the male-only sample and greater representation of individuals with high verbal and cognitive performance. Conclusions: These findings evidence a complex pattern of functional lateralization differences in autism, extending beyond the Language network to the Salience/Ventral Attention-A and Control-B networks, yet not encompassing all networks, indicating a selective divergence rather than a pervasive one. Furthermore, a differential relationship was identified between Language network lateralization and specific symptom profiles (namely, language delay) of autism.

5.
Neuroimage Rep ; 2(2)2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36032692

RESUMEN

Background and purpose: Large MRI studies often pool data gathered from widely varying imaging sequences. Pooled data creates a potential source of variation in structural analyses which may cause misinterpretation of findings. The purpose of this study is to determine if data acquired using different scan sequences, head coils and scanners offers consistent structural measurements. Materials and methods: Participants (163 right-handed males: 82 typically developing controls, 81 participants with autism spectrum disorder) were scanned on the same day using an MPRAGE sequence with a 12-channel headcoil on a Siemens 3T Trio scanner and an MP2RAGE sequence with a 64-channel headcoil on a Siemens 3T Prisma scanner. Segmentation was performed using FreeSurfer to identify regions exhibiting variation between sequences on measures of volume, surface area, and cortical thickness. Intraclass correlation coefficient (ICC) and mean percent difference (MPD) were used as test-retest reproducibility measures. Results: ICC for total brain segmented volume yielded a 0.99 intraclass correlation, demonstrating high overall volumetric reproducibility. Comparison of individual regions of interest resulted in greater variation. Volumetric variability, although low overall, was greatest in the entorhinal cortex (ICC = 0.71), frontal (ICC = 0.60) and temporal (ICC = 0.60) poles. Surface area variability was greatest in the insula (ICC = 0.65), temporal (ICC = 0.64) and frontal (ICC = 0.68) poles. Cortical thickness was most variable in the frontal (ICC = 0.41) and temporal (ICC = 0.35) poles. Conclusion: Data collected on different scanners and head coils using MPRAGE and MP2RAGE are generally consistent for surface area and volume estimates. However, regional variability may constrain accuracy in some regions and cortical thickness measurements exhibit higher generalized variability.

6.
J Autism Dev Disord ; 52(10): 4490-4504, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34677753

RESUMEN

Intelligence (IQ) scores are used in educational and vocational planning for individuals with autism spectrum disorder (ASD) yet little is known about the stability of IQ throughout development. We examined longitudinal age-related IQ stability in 119 individuals with ASD (3-36 years of age at first visit) and 128 typically developing controls. Intelligence measures were collected over a 20-year period. In ASD, Full Scale (FSIQ) and Verbal (VIQ) Intelligence started lower in childhood and increased at a greater rate with age relative to the control group. By early adulthood, VIQ and working memory stabilized, whereas nonverbal and perceptual scores continued to change. Our results suggest that in individuals with ASD, IQ estimates may be dynamic in childhood and young adulthood.


Asunto(s)
Trastorno del Espectro Autista , Adulto , Anciano de 80 o más Años , Preescolar , Cognición , Humanos , Inteligencia , Pruebas de Inteligencia , Memoria a Corto Plazo , Adulto Joven
8.
Neuroimage ; 240: 118387, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34260891

RESUMEN

Autism spectrum disorder has long been associated with a variety of organizational and developmental abnormalities in the brain. An increase in extra-axial cerebrospinal fluid volume in autistic individuals between the ages of 6 months and 4 years has been reported in recent studies. Increased extra-axial cerebrospinal fluid volume was predictive of the diagnosis and severity of the autistic symptoms in all of them, irrespective of genetic risk for developing the disorder. In the present study, we explored the trajectory of extra-axial cerebrospinal fluid volume from childhood to adulthood in both autism and typical development. We hypothesized that an elevated extra-axial cerebrospinal fluid volume would be found in autism persisting throughout the age range studied. We tested the hypothesis by employing an accelerated, multi-cohort longitudinal data set of 189 individuals (97 autistic, 92 typically developing). Each individual had been scanned between 1 and 5 times, with scanning sessions separated by 2-3 years, for a total of 439 T1-weighted MRI scans. A linear mixed-effects model was used to compare developmental, age-related changes in extra-axial cerebrospinal fluid volume between groups. Inconsistent with our hypothesis, we found no group differences in extra-axial cerebrospinal fluid volume in this cohort of individuals 3 to 42 years of age. Our results suggest that extra-axial cerebrospinal fluid volume in autistic individuals is not increased compared with controls beyond four years of age.


Asunto(s)
Envejecimiento/fisiología , Trastorno del Espectro Autista/diagnóstico por imagen , Líquido Cefalorraquídeo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Adolescente , Adulto , Encéfalo/crecimiento & desarrollo , Cefalometría , Niño , Preescolar , Conjuntos de Datos como Asunto , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética/instrumentación , Masculino , Tamaño de los Órganos , Control de Calidad , Adulto Joven
9.
Neuroimage ; 236: 118067, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33878377

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with unknown brain etiology. Our knowledge to date about structural brain development across the lifespan in ASD comes mainly from cross-sectional studies, thereby limiting our understanding of true age effects within individuals with the disorder that can only be gained through longitudinal research. The present study describes FreeSurfer-derived volumetric findings from a longitudinal dataset consisting of 607 T1-weighted magnetic resonance imaging (MRI) scans collected from 105 male individuals with ASD (349 MRIs) and 125 typically developing male controls (258 MRIs). Participants were six to forty-five years of age at their first scan, and were scanned up to 5 times over a period of 16 years (average inter-scan interval of 3.7 years). Atypical age-related volumetric trajectories in ASD included enlarged gray matter volume in early childhood that approached levels of the control group by late childhood, an age-related increase in ventricle volume resulting in enlarged ventricles by early adulthood and reduced corpus callosum age-related volumetric increase resulting in smaller corpus callosum volume in adulthood. Larger corpus callosum volume was related to a lower (better) ADOS score at the most recent study visit for the participants with ASD. These longitudinal findings expand our knowledge of volumetric brain-based abnormalities in males with ASD, and highlight the need to continue to examine brain structure across the lifespan and well into adulthood.


Asunto(s)
Trastorno del Espectro Autista , Ventrículos Cerebrales , Cuerpo Calloso , Sustancia Gris , Desarrollo Humano , Adolescente , Adulto , Trastorno del Espectro Autista/diagnóstico por imagen , Trastorno del Espectro Autista/patología , Trastorno del Espectro Autista/fisiopatología , Ventrículos Cerebrales/diagnóstico por imagen , Ventrículos Cerebrales/crecimiento & desarrollo , Ventrículos Cerebrales/patología , Niño , Cuerpo Calloso/diagnóstico por imagen , Cuerpo Calloso/crecimiento & desarrollo , Cuerpo Calloso/patología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/crecimiento & desarrollo , Sustancia Gris/patología , Desarrollo Humano/fisiología , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Adulto Joven
10.
Curr Opin Psychiatry ; 33(2): 110-116, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31815759

RESUMEN

PURPOSE OF REVIEW: Impairments in social interaction/communication become apparent after 12 months of age in children who develop Autism spectrum disorder (ASD). Studies of baby siblings of children with ASD provide the means to detect changes in the brain that are present before behavioral symptoms appear. In this review, advances from brain imaging studies of infant siblings over the past 18 months are highlighted. RECENT FINDINGS: During the first 2 months of life, functional differences in social brain regions and microstructural differences in dorsal language tracks are found in some high-risk baby siblings. At 4-6 months of age, differences in subcortical and cerebellum volumes and atypical cortical responses to social stimuli are evident. At 6 months, extra-axial cerebrospinal fluid is increased, and at 8 months there is evidence of cortical hyper-reactivity. Patterns of functional connectivity are distinct in infant siblings and suggest dysfunctional activation and integration of information across the cortex and neural networks underlying social behaviors. SUMMARY: Further replication in very large independent samples is needed to verify the majority of the findings discussed and understand how they are related within individual infants. Much more research is needed before translation to clinical practice.


Asunto(s)
Trastorno Autístico , Encéfalo , Desarrollo Infantil/fisiología , Conectoma/métodos , Neuroimagen Funcional/métodos , Conducta Social , Trastorno Autístico/diagnóstico , Trastorno Autístico/psicología , Encéfalo/diagnóstico por imagen , Encéfalo/crecimiento & desarrollo , Humanos , Lactante , Hermanos/psicología
11.
Mol Autism ; 10: 27, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31285817

RESUMEN

Background: Autism is hypothesized to represent a disorder of brain connectivity, yet patterns of atypical functional connectivity show marked heterogeneity across individuals. Methods: We used a large multi-site dataset comprised of a heterogeneous population of individuals with autism and typically developing individuals to compare a number of resting-state functional connectivity features of autism. These features were also tested in a single site sample that utilized a high-temporal resolution, long-duration resting-state acquisition technique. Results: No one method of analysis provided reproducible results across research sites, combined samples, and the high-resolution dataset. Distinct categories of functional connectivity features that differed in autism such as homotopic, default network, salience network, long-range connections, and corticostriatal connectivity, did not align with differences in clinical and behavioral traits in individuals with autism. One method, lag-based functional connectivity, was not correlated to other methods in describing patterns of resting-state functional connectivity and their relationship to autism traits. Conclusion: Overall, functional connectivity features predictive of autism demonstrated limited generalizability across sites, with consistent results only for large samples. Different types of functional connectivity features do not consistently predict different symptoms of autism. Rather, specific features that predict autism symptoms are distributed across feature types.


Asunto(s)
Trastorno Autístico/fisiopatología , Red Nerviosa/fisiopatología , Adolescente , Adulto , Estudios de Cohortes , Bases de Datos como Asunto , Femenino , Humanos , Masculino , Reproducibilidad de los Resultados , Descanso
13.
J Pediatr Neuropsychol ; 5(3): 77-84, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32953403

RESUMEN

Although diminished proficiency on tasks that require visual-motor integration (VMI) has been reported in individuals with autism spectrum disorder (ASD), very few studies have examined the association between VMI performance and neuroanatomical regions of interest (ROI) involved in motor and perceptual functioning. To address these issues, the current study included an all-male sample of 41 ASD (ages 3-23 years) and 27 typically developing (TD) participants (ages 5-26 years) who completed the Beery-Buktenica Developmental Test of Visual-Motor Integration (Beery VMI) as part of a comprehensive neuropsychological battery. All participants underwent 3.0 T magnetic resonance imaging (MRI) with image quantification (FreeSurfer software v5.3). The groups were statistically matched on age, handedness, and intracranial volume (ICV). ASD participants performed significantly lower on VMI and IQ measures compared with the TD group. VMI performance was significantly correlated with FSIQ and PIQ in the TD group only. No pre-defined neuroanatomical ROIs were significantly different between groups. Significant correlations were observed in the TD group between VMI and total precentral gyrus gray matter volume (r = .51, p = .006) and total frontal lobe gray matter volume (r = .46, p = .017). There were no significant ROI correlations with Beery VMI performance in ASD participants. At the group level, despite ASD participants exhibiting reduced visuomotor abilities, no systematic relation with motor or sensory-perceptual ROIs was observed. In the TD group, results were consistent with the putative role of the precentral gyrus in motor control along with frontal involvement in planning, organization, and execution monitoring, all essential for VMI performance. Given that similar associations between VMI and ROIs were not observed in those with ASD, neurodevelopment in ASD group participants may not follow homogenous patterns making correlations in these brain regions unlikely to be observed.

14.
Radiology ; 289(2): 509-516, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30063192

RESUMEN

Purpose To develop and evaluate a retrospective method to minimize motion artifacts in structural MRI. Materials and Methods The motion-correction strategy was developed for three-dimensional radial data collection and demonstrated with MPnRAGE, a technique that acquires high-resolution volumetric magnetization-prepared rapid gradient-echo, or MPRAGE, images with multiple tissue contrasts. Forty-four pediatric participants (32 with autism spectrum disorder [mean age ± standard deviation, 13 years ± 3] and 12 age-matched control participants [mean age, 12 years ± 3]) were imaged without sedation. Images with and images without retrospective motion correction were scored by using a Likert scale (0-4 for unusable to excellent) by two experienced neuroradiologists. The Tenengrad metric (a reference-free measure of image sharpness) and statistical analyses were performed to determine the effects of performing retrospective motion correction. Results MPnRAGE T1-weighted images with retrospective motion correction were all judged to have good or excellent quality. In some cases, retrospective motion correction improved the image quality from unusable (Likert score of 0) to good (Likert score of 3). Overall, motion correction improved mean Likert scores from 3.0 to 3.8 and reduced standard deviations from 1.1 to 0.4. Image quality was significantly improved with motion correction (Mann-Whitney U test; P < .001). Intraclass correlation coefficients for absolute agreement of Tenengrad scores with reviewers 1 and 2 were 0.92 and 0.88 (P < .0005 for both), respectively. In no cases did the retrospective motion correction induce severe image degradation. Conclusion Retrospective motion correction of MPnRAGE data were shown to be highly effective for consistently improving image quality of T1-weighted MRI in unsedated pediatric participants, while also enabling multiple tissue contrasts to be reconstructed for structural analysis. © RSNA, 2018 Online supplemental material is available for this article.


Asunto(s)
Artefactos , Trastorno del Espectro Autista , Encéfalo/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Adolescente , Niño , Femenino , Humanos , Masculino , Movimiento (Física) , Neuroimagen/métodos , Reproducibilidad de los Resultados , Estudios Retrospectivos
15.
J Autism Dev Disord ; 48(10): 3319-3329, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29728946

RESUMEN

The relationship between brain development and clinical heterogeneity in autism (ASD) is unknown. This study examines the Social Responsiveness Scale (SRS) in relation to the longitudinal development of cortical thickness. Participants (N = 91 ASD, N = 56 TDC; 3-39 years at first scan) were scanned up to three times over a 7-year period. Mixed-effects models examined cortical thickness in relation to SRS score. ASD participants with higher SRS scores showed regionally increased age-related cortical thinning. Regional thickness differences and reduced age-related cortical thinning were found in predominantly right lateralized regions in ASD with decreasing SRS scores over time. Our findings emphasize the importance of examining clinical phenotypes in brain-based studies of ASD.


Asunto(s)
Trastorno del Espectro Autista/diagnóstico por imagen , Trastorno del Espectro Autista/psicología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/crecimiento & desarrollo , Relaciones Interpersonales , Adolescente , Adulto , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Estudios Longitudinales , Masculino , Tamaño de los Órganos , Adulto Joven
16.
J Clin Exp Neuropsychol ; 40(5): 502-517, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29072106

RESUMEN

Studies have shown that individuals with autism spectrum disorder (ASD) tend to perform significantly below typically developing individuals on standardized measures of attention, even when controlling for IQ. The current study sought to examine within ASD whether anatomical correlates of attention performance differed between those with average to above-average IQ (AIQ group) and those with low-average to borderline ability (LIQ group) as well as in comparison to typically developing controls (TDC). Using automated volumetric analyses, we examined regional volume of classic attention areas including the superior frontal gyrus, anterior cingulate cortex, and precuneus in ASD AIQ (n = 38) and LIQ (n = 18) individuals along with 30 TDC. Auditory attention performance was assessed using subtests of the Test of Memory and Learning (TOMAL) compared among the groups and then correlated with regional brain volumes. Analyses revealed group differences in attention. The three groups did not differ significantly on any auditory attention-related brain volumes; however, trends toward significant size-attention function interactions were observed. Negative correlations were found between the volume of the precuneus and auditory attention performance for the AIQ ASD group, indicating larger volume related to poorer performance. Implications for general attention functioning and dysfunctional neural connectivity in ASD are discussed.


Asunto(s)
Atención , Trastorno del Espectro Autista/diagnóstico por imagen , Trastorno del Espectro Autista/psicología , Estimulación Acústica , Adolescente , Corteza Cerebral/diagnóstico por imagen , Niño , Preescolar , Humanos , Pruebas de Inteligencia , Imagen por Resonancia Magnética , Masculino , Pruebas Neuropsicológicas , Desempeño Psicomotor , Adulto Joven
17.
Autism Res ; 11(3): 450-462, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29251836

RESUMEN

The thalamus is a key sensorimotor relay area that is implicated in autism spectrum disorder (ASD). However, it is unknown how the thalamus and white-matter structures that contain thalamo-cortical fiber connections (e.g., the internal capsule) develop from childhood into adulthood and whether this microstructure relates to basic motor challenges in ASD. We used diffusion weighted imaging in a cohort-sequential design to assess longitudinal development of the thalamus, and posterior- and anterior-limbs of the internal capsule (PLIC and ALIC, respectively) in 89 males with ASD and 56 males with typical development (3-41 years; all verbal). Our results showed that the group with ASD exhibited different developmental trajectories of microstructure in all regions, demonstrating childhood group differences that appeared to approach and, in some cases, surpass the typically developing group in adolescence and adulthood. The PLIC (but not ALIC nor thalamus) mediated the relation between age and finger-tapping speed in both groups. Yet, the gap in finger-tapping speed appeared to widen at the same time that the between-group gap in the PLIC appeared to narrow. Overall, these results suggest that childhood group differences in microstructure of the thalamus and PLIC become less robust in adolescence and adulthood. Further, finger-tapping speed appears to be mediated by the PLIC in both groups, but group differences in motor speed that widen during adolescence and adulthood suggest that factors beyond the microstructure of the thalamus and internal capsule may contribute to atypical motor profiles in ASD. Autism Res 2018, 11: 450-462. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Microstructure of the thalamus, a key sensory and motor brain area, appears to develop differently in individuals with autism spectrum disorder (ASD). Microstructure is important because it informs us of the density and organization of different brain tissues. During childhood, thalamic microstructure was distinct in the ASD group compared to the typically developing group. However, these group differences appeared to narrow with age, suggesting that the thalamus continues to dynamically change in ASD into adulthood.


Asunto(s)
Trastorno del Espectro Autista/fisiopatología , Imagen de Difusión por Resonancia Magnética/métodos , Cápsula Interna/diagnóstico por imagen , Cápsula Interna/fisiopatología , Tálamo/diagnóstico por imagen , Tálamo/fisiopatología , Adolescente , Adulto , Niño , Preescolar , Estudios de Cohortes , Humanos , Estudios Longitudinales , Masculino , Adulto Joven
18.
JAMA Netw Open ; 1(7): e184777, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30646371

RESUMEN

Importance: Despite reports of widespread but heterogeneous atypicality of functional connectivity in individuals with autism, little is known regarding the temporal dynamics of functional brain connections and how they relate to autistic traits. Objective: To investigate differences in temporal synchrony between brain regions in individuals with autism and those with typical development. Design, Setting, and Participants: This cohort study, conducted at the University of Utah, included 90 adolescent and adult male participants. A larger sample from the multisite Autism Brain Imaging Data Exchange (ABIDE) was also used as a replication sample. The study includes data acquired between December 2016 and April 2018. Aggregate data included in the replication sample were released to the public in August 2012 (ABIDE I) and June 2016 (ABIDE II). Data analysis were conducted between January 2018 and April 2018. Exposures: Male individuals diagnosed as having autism (n = 52) and typically developing male individuals (n = 38). Main Outcomes and Measures: Long duration (30 minutes/individual) of multiband, multiecho functional magnetic resonance imaging was acquired to estimate functional connectivity between brain regions. Sustained connectivity, a measure of functional connectivity duration, as well as lagged temporal dynamics related to functional connectivity, were compared between groups for 361 gray matter regions of interest and a 17-network parcellation. Lagged findings were replicated in the larger ABIDE sample (n = 1402). Sustained connectivity findings were also associated with behavioral and cognitive variables. Results: In 52 males with autism (mean [SD] age, 27.73 [8.66] years) and 38 control males with typical development (mean [SD] age, 27.09 [7.49] years), increases in both sustained and functional connectivity at several lags were found in individuals with autism compared with the control group. Group differences in functional connectivity were replicated in the larger ABIDE data set at a 6-second lag. Measures of symptom severity in individuals with autism were positively associated with sustained connectivity values. In the control group, sustained connectivity was negatively associated with cognitive processing. A replication sample (n = 1402) composed of 579 individuals with autism (80 female and 499 male; mean [SD] age, 15.08 [6.89] years) and 823 in the control group (211 female and 612 male; mean [SD] age, 15.06 [6.79] years) from the ABIDE data set was also analyzed. Conclusions and Relevance: Whereas the magnitude of functional connectivity in autism is variable across brain regions, participant samples, and development, prolonged temporal synchrony of functional connections is reproducibly observed in autism, suggesting a potential mechanism for core symptoms.


Asunto(s)
Trastorno Autístico/fisiopatología , Encéfalo/fisiopatología , Vías Nerviosas/fisiopatología , Adolescente , Adulto , Trastorno Autístico/diagnóstico por imagen , Trastorno Autístico/epidemiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Estudios de Casos y Controles , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiología , Utah , Adulto Joven
19.
Res Autism Spectr Disord ; 34: 44-51, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28966659

RESUMEN

BACKGROUND: Aggressive behaviors are common in individuals diagnosed with autism spectrum disorder (ASD) and may be phenotypic indicators of different subtypes within ASD. In current research literature for non-ASD samples, aggression has been linked to several brain structures associated with emotion and behavioral control. However, few if any studies exist investigating brain volume differences in individuals with ASD who have comorbid aggression as indicated by standardized diagnostic and behavioral measures. METHOD: We examined neuroimaging data from individuals rigorously diagnosed with ASD versus typically developing (TD) controls. We began with data from brain volume regions of interest (ROI) taken from previous literature on aggression including the brainstem, amygdala, orbitofrontal cortex, anterior cingulate cortex, and dorsolateral prefrontal cortex. We defined aggression status using the Irritability subscale of the Aberrant Behavior Checklist and used lasso logistic regression to select among these predictor variables. Brainstem volume was the only variable shown to be a predictor of aggression status. RESULTS: We found that smaller brainstem volumes are associated with higher odds of being in the high aggression group. CONCLUSIONS: Understanding brain differences in individuals with ASD who engage in aggressive behavior from those with ASD who do not can inform treatment approaches. Future research should investigate brainstem structure and function in ASD to identify possible mechanisms related to arousal and aggression.

20.
Sci Data ; 4: 170010, 2017 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-28291247

RESUMEN

The second iteration of the Autism Brain Imaging Data Exchange (ABIDE II) aims to enhance the scope of brain connectomics research in Autism Spectrum Disorder (ASD). Consistent with the initial ABIDE effort (ABIDE I), that released 1112 datasets in 2012, this new multisite open-data resource is an aggregate of resting state functional magnetic resonance imaging (MRI) and corresponding structural MRI and phenotypic datasets. ABIDE II includes datasets from an additional 487 individuals with ASD and 557 controls previously collected across 16 international institutions. The combination of ABIDE I and ABIDE II provides investigators with 2156 unique cross-sectional datasets allowing selection of samples for discovery and/or replication. This sample size can also facilitate the identification of neurobiological subgroups, as well as preliminary examinations of sex differences in ASD. Additionally, ABIDE II includes a range of psychiatric variables to inform our understanding of the neural correlates of co-occurring psychopathology; 284 diffusion imaging datasets are also included. It is anticipated that these enhancements will contribute to unraveling key sources of ASD heterogeneity.


Asunto(s)
Trastorno del Espectro Autista , Conectoma , Humanos , Imagen por Resonancia Magnética , Neuroimagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...