Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Biol Anthropol ; : e25006, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39049552

RESUMEN

OBJECTIVES: Cortical bone geometry is commonly used to investigate biomechanical properties of primate mandibles. However, the ontogeny of these properties is less understood. Here we investigate changes in cortical bone cross-sectional properties throughout capuchin ontogeny and compare captive versus wild, semi-provisioned groups. Tufted capuchins (Sapajus spp.) are known to consume relatively hard/tough foods, while untufted capuchins (Cebus spp.) exploit less mechanically challenging foods. Previous research indicates dietary differences are present early in development and adult Sapajus mandibles can resist higher bending/shear/torsional loads. MATERIALS AND METHODS: This study utilized microCT scans of 22 Cebus and 45 Sapajus from early infancy to adulthood from three sample populations: one captive Cebus, one captive Sapajus, and one semi-provisioned, free-ranging Sapajus. Mandibular cross-sectional properties were calculated at the symphysis, P3, and M1. If the tooth had not erupted, its position within the crypt was used. A series of one-way ANOVAs were performed to assess differences between and within the sample populations. RESULTS: Mandible robusticity increases across ontogeny for all three sample populations. Sapajus were better able to withstand bending and torsional loading even early in ontogeny, but no difference in shear resistance was found. Semi-provisioned, free-ranging Sapajus tend to show increased abilities to resist bending and torsional loading but not shear loading compared to captive Sapajus. DISCUSSION: This study helps advance our understanding of the primate masticatory system development and opens the door for further studies into adaptive plasticity in shaping the masticatory apparatus of capuchins and differences in captive versus free-ranging sample populations.

2.
J Morphol ; 285(5): e21699, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38715161

RESUMEN

In 1974, Sue Herring described the relationship between two important performance variables in the feeding system, bite force and gape. These variables are inversely related, such that, without specific muscular adaptations, most animals cannot produce high bite forces at large gapes for a given sized muscle. Despite the importance of these variables for feeding biomechanics and functional ecology, the paucity of in vivo bite force data in primates has led to bite forces largely being estimated through ex vivo methods. Here, we quantify and compare in vivo bite forces and gapes with output from simulated musculoskeletal models in two craniofacially distinct strepsirrhines: Eulemur, which has a shorter jaw and slower chewing cycle durations relative to jaw length and body mass compared to Varecia. Bite forces were collected across a range of linear gapes from 16 adult lemurs (suborder Strepsirrhini) at the Duke Lemur Center in Durham, North Carolina representing three species: Eulemur flavifrons (n = 6; 3F, 3M), Varecia variegata (n = 5; 3F, 2M), and Varecia rubra (n = 5; 5F). Maximum linear and angular gapes were significantly higher for Varecia compared to Eulemur (p = .01) but there were no significant differences in recorded maximum in vivo bite forces (p = .88). Simulated muscle models using architectural data for these taxa suggest this approach is an accurate method of estimating bite force-gape tradeoffs in addition to variables such as fiber length, fiber operating range, and gapes associated with maximum force. Our in vivo and modeling data suggest Varecia has reduced bite force capacities in favor of absolutely wider gapes compared to Eulemur in relation to their longer jaws. Importantly, our comparisons validate the simulated muscle approach for estimating bite force as a function of gape in extant and fossil primates.


Asunto(s)
Fuerza de la Mordida , Animales , Fenómenos Biomecánicos , Maxilares/anatomía & histología , Maxilares/fisiología , Lemur/fisiología , Lemur/anatomía & histología , Masticación/fisiología , Masculino , Femenino
3.
J Morphol ; 285(5): e21705, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38704727

RESUMEN

The ontogeny of feeding is characterized by shifting functional demands concurrent with changes in craniofacial anatomy; relationships between these factors will look different in primates with disparate feeding behaviors during development. This study examines the ontogeny of skull morphology and jaw leverage in tufted (Sapajus) and untufted (Cebus) capuchin monkeys. Unlike Cebus, Sapajus have a mechanically challenging diet and behavioral observations of juvenile Sapajus suggest these foods are exploited early in development. Landmarks were placed on three-dimensional surface models of an ontogenetic series of Sapajus and Cebus skulls (n = 53) and used to generate shape data and jaw-leverage estimates across the tooth row for three jaw-closing muscles (temporalis, masseter, medial pterygoid) as well as a weighted combined estimate. Using geometric morphometric methods, we found that skull shape diverges early and shape is significantly different between Sapajus and Cebus throughout ontogeny. Additionally, jaw leverage varies with age and position on the tooth row and is greater in Sapajus compared to Cebus when calculated at the permanent dentition. We used two-block partial least squares analyses to identify covariance between skull shape and each of our jaw muscle leverage estimates. Sapajus, but not Cebus, has significant covariance between all leverage estimates at the anterior dentition. Our findings show that Sapajus and Cebus exhibit distinct craniofacial morphologies early in ontogeny and strong covariance between leverage estimates and craniofacial shape in Sapajus. These results are consistent with prior behavioral and comparative work suggesting these differences are a function of selection for exploiting mechanically challenging foods in Sapajus, and further emphasize that these differences appear quite early in ontogeny. This research builds on prior work that has highlighted the importance of understanding ontogeny for interpreting adult morphology.


Asunto(s)
Cebus , Maxilares , Cráneo , Animales , Cráneo/anatomía & histología , Cráneo/crecimiento & desarrollo , Maxilares/anatomía & histología , Cebus/anatomía & histología , Sapajus/anatomía & histología , Sapajus/crecimiento & desarrollo , Conducta Alimentaria/fisiología , Masculino , Femenino
4.
Philos Trans R Soc Lond B Biol Sci ; 378(1891): 20220550, 2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-37839440

RESUMEN

Dynamic changes in jaw movements and bite forces depend on muscle architectural and neural factors that have rarely been compared within the same muscle. Here we investigate how regional muscle architecture dynamics-fascicle rotation, shortening, lengthening and architectural gear ratio (AGR)-vary during chewing across a functionally heterogeneous muscle. We evaluate whether timing in architecture dynamics relates to gape, food material properties and/or muscle activation. We also examine whether static estimates of temporalis fibre architecture track variation in dynamic architecture. Fascicle-level architecture dynamics were measured in three regions of the superficial temporalis of three adult tufted capuchins (Sapajus apella) using biplanar videoradiography and the XROMM workflow. Architecture dynamics data were paired with regional fine-wire electromyography data from four adult tufted capuchins. Gape accounted for most architectural change across the temporalis, but architectural dynamics varied between regions. Mechanically challenging foods were associated with lower AGRs in the anterior region. The timing of most dynamic architectural changes did not vary between regions and differed from regional variation in static architecture. Collectively these findings suggest that, when modelling temporalis muscle force production in extant and fossil primates, it is important to account for the effects of gape, regionalization and food material properties. This article is part of the theme issue 'Food processing and nutritional assimilation in animals'.


Asunto(s)
Músculo Masetero , Sapajus , Animales , Músculo Masetero/fisiología , Maxilares/fisiología , Músculo Temporal/fisiología , Músculo Esquelético , Primates
5.
Philos Trans R Soc Lond B Biol Sci ; 378(1891): 20220553, 2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-37839441

RESUMEN

There are no comparative, empirical studies of the energetic costs of feeding in mammals. As a result, we lack physiological data to better understand the selection pressures on the mammalian feeding apparatus and the influence of variables such as food geometric and material properties. This study investigates interspecific scaling of the net energetic costs of feeding in relation to body size, jaw-adductor muscle mass and food properties in a sample of 12 non-human primate species ranging in size from 0.08 to 4.2 kg. Net energetic costs during feeding were measured by indirect calorimetry for a variety of pre-cut and whole raw foods varying in geometric and material properties. Net feeding costs were determined in two ways: by subtracting either the initial metabolic rate prior to feeding or subtracting the postprandial metabolic rate. Interspecific scaling relationships were evaluated using pGLS and OLS regression. Net feeding costs scale negatively relative to both body mass and jaw-adductor mass. Large animals incur relatively lower feeding costs indicating that small and large animals experience and solve mechanical challenges in relation to energetics in different ways. This article is part of the theme issue 'Food processing and nutritional assimilation in animals'.


Asunto(s)
Mamíferos , Primates , Animales , Primates/fisiología , Mamíferos/fisiología , Músculo Esquelético/fisiología , Tamaño Corporal/fisiología , Conducta Alimentaria
6.
Philos Trans R Soc Lond B Biol Sci ; 378(1891): 20220559, 2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-37839455

RESUMEN

How animals process and absorb nutrients from their food is a fundamental question in biology. Despite the continuity and interaction between intraoral food processing and post-oesophageal nutritional extraction, these topics have largely been studied separately. At present, we lack a synthesis of how pre- and post-oesophageal mechanisms of food processing shape the ability of various taxa to effectively assimilate nutrients from their diet. The aim of this special issue is to catalyse a unification of these distinct approaches as a functional continuum. We highlight questions that derive from this synthesis, as well as technical advances to address these questions. At present, there is also a skew toward vertebrates in studies of feeding form-function mechanics; by including perspectives from researchers working on both vertebrates and invertebrates, we hope to stimulate integrative and comparative research on food processing and nutritional assimilation. Below, we discuss how the papers in this issue contribute to these goals in three areas: championing a functional-comparative approach, quantifying performance and emphasizing the effects of life history, and food substrate and extrinsic factors in current and future studies of oral food processing and nutritional assimilation. This article is part of the theme issue 'Food processing and nutritional assimilation in animals'.


Asunto(s)
Dieta , Invertebrados , Animales , Vertebrados , Nutrientes , Manipulación de Alimentos
7.
J Exp Biol ; 226(15)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37439316

RESUMEN

Bite force and gape are two important performance metrics of the feeding system, and these metrics are inversely related for a given muscle size because of fundamental constraints in sarcomere length-tension relationships. How these competing performance metrics change in developing primates is largely unknown. Here, we quantified in vivo bite forces and gapes across ontogeny and examined these data in relation to body mass and cranial measurements in captive tufted capuchins, Sapajus spp. Bite force and gape were also compared across geometric and mechanical properties of mechanically challenging foods to investigate relationships between bite force, gape and food accessibility (defined here as the ability to breach shelled nuts). Bite forces at a range of gapes and feeding behavioral data were collected from a cross-sectional ontogenetic series of 20 captive and semi-wild tufted capuchins at the Núcleo de Procriação de Macacos-Prego Research Center in Araçatuba, Brazil. These data were paired with body mass, photogrammetric measures of jaw length and facial width, and food geometric and material properties. Tufted capuchins with larger body masses had absolutely higher in vivo bite forces and gapes, and animals with wider faces had absolutely higher bite forces. Bite forces and gapes were significantly smaller in juveniles compared with subadults and adults. These are the first primate data to empirically demonstrate the gapes at which maximum active bite force is generated and to demonstrate relationships to food accessibility. These data advance our understanding of how primates meet the changing performance demands of the feeding system during development.


Asunto(s)
Fuerza de la Mordida , Cráneo , Animales , Estudios Transversales , Conducta Alimentaria/fisiología , Sarcómeros , Fenómenos Biomecánicos , Maxilares/fisiología
8.
Am J Biol Anthropol ; 180(4): 633-654, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36790169

RESUMEN

OBJECTIVES: Morphological variation in cranial sutures is used to infer aspects of primate feeding behavior, including diet, but strain regimes across sutures are not well documented. Our aim is to test hypotheses about sagittal suture morphology, strain regime, feeding behavior, and muscle activity relationships in robust Sapajus and gracile Cebus capuchin primates. MATERIALS AND METHODS: Morphometrics of sinuosity in three regions of the sagittal suture were compared among museum specimens of Sapajus and Cebus, as well as in robust and gracile lab specimens. In vivo strains and bilateral electromyographic (EMG) activity were recorded from these regions in the temporalis muscles of capuchin primates while they fed on mechanically-varying foods. RESULTS: Sapajus and the anterior suture region exhibited greater sinuosity than Cebus and posterior regions. In vivo data reveal minor differences in strain regime between robust and gracile phenotypes but show higher strain magnitudes in the middle suture region and higher tensile strains anteriorly. After gage location, feeding behavior has the most consistent and strongest impact on strain regime in the sagittal suture. Strain in the anterior suture has a high tension to compression ratio compared to the posterior region, especially during forceful biting in the robust Sapajus-like individual. DISCUSSION: Sagittal suture complexity in robust capuchins likely reflects feeding behaviors associated with mechanically challenging foods. Sutural strain regimes in other anthropoid primates may also be affected by activity in feeding muscles.


Asunto(s)
Suturas Craneales , Masticación , Cebus/fisiología , Sapajus/fisiología , Animales , Masculino , Femenino , Análisis de Varianza , Modelos Lineales , Teorema de Bayes , Músculo Esquelético/fisiología , Análisis de Regresión , Masticación/fisiología , Suturas Craneales/fisiología
9.
Nature ; 603(7900): 290-296, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35197631

RESUMEN

Multiple lines of genetic and archaeological evidence suggest that there were major demographic changes in the terminal Late Pleistocene epoch and early Holocene epoch of sub-Saharan Africa1-4. Inferences about this period are challenging to make because demographic shifts in the past 5,000 years have obscured the structures of more ancient populations3,5. Here we present genome-wide ancient DNA data for six individuals from eastern and south-central Africa spanning the past approximately 18,000 years (doubling the time depth of sub-Saharan African ancient DNA), increase the data quality for 15 previously published ancient individuals and analyse these alongside data from 13 other published ancient individuals. The ancestry of the individuals in our study area can be modelled as a geographically structured mixture of three highly divergent source populations, probably reflecting Pleistocene interactions around 80-20 thousand years ago, including deeply diverged eastern and southern African lineages, plus a previously unappreciated ubiquitous distribution of ancestry that occurs in highest proportion today in central African rainforest hunter-gatherers. Once established, this structure remained highly stable, with limited long-range gene flow. These results provide a new line of genetic evidence in support of hypotheses that have emerged from archaeological analyses but remain contested, suggesting increasing regionalization at the end of the Pleistocene epoch.


Asunto(s)
Población Negra , ADN Antiguo , Genética de Población , África del Sur del Sahara , Arqueología , Población Negra/genética , Población Negra/historia , ADN Antiguo/análisis , Flujo Génico/genética , Genoma Humano/genética , Historia Antigua , Humanos
10.
Artículo en Inglés | MEDLINE | ID: mdl-34764513

RESUMEN

Dental microwear analysis has been employed in studies of a wide range of modern and fossil animals, yielding insights into the biology/ecology of those taxa. Some researchers have suggested that dental microwear patterns ultimately relate back to the material properties of the foods being consumed, whereas others have suggested that, because exogenous grit is harder than organic materials in food, grit should have an overwhelming impact on dental microwear patterns. To shed light on this issue, laboratory-based feeding experiments were conducted on tufted capuchin monkeys [Sapajus apella] with dental impressions taken before and after consumption of different artificial foods. The foods were (1) brittle custom-made biscuits laced with either of two differently-sized aluminum silicate abrasives, and (2) ductile custom-made "gummies" laced with either of the two same abrasives. In both cases, animals were allowed to feed on the foods for 36 hours before follow-up dental impressions were taken. Resultant casts were analyzed using a scanning electron microscope. We asked five questions: (1) would the animals consume different amounts of each food item, (2) what types of dental microwear would be formed, (3) would rates of dental microwear differ between the consumption of biscuits (i.e., brittle) versus gummies (i.e., ductile), (4) would rates of dental microwear differ between foods including larger- versus smaller-grained abrasives, and (5) would rates of dental microwear differ between molar shearing and crushing facets in the animals in these experiments? Results indicated that (1) fewer biscuits were consumed when laced with larger-grained abrasives (as opposed to smaller-grained abrasives), but no such difference was observed in the consumption of gummies, (2) in all cases, a variety of dental microwear features was formed, (3) rates of dental microwear were higher when biscuits versus gummies were consumed, (4) biscuits laced with larger-grained abrasives caused a higher percentage of new features per item consumed, and (5) the only difference between facets occurred with the processing of biscuits, where crushing facets showed a faster rate of wear than shearing facets. These findings suggest that the impact of exogenous grit on dental microwear is the result of a dynamic, complex interaction between (at the very least) grit size, food material properties, and time spent feeding - which is further evidence of the multifactorial nature of dental microwear formation.

11.
Am J Phys Anthropol ; 175(1): 187-200, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33615431

RESUMEN

OBJECTIVES: The Late Pleistocene and early Holocene in eastern Africa are associated with complex evolutionary and demographic processes that contributed to the population variability observed in the region today. However, there are relatively few human skeletal remains from this time period. Here we describe six individuals from the Kisese II rockshelter in Tanzania that were excavated in 1956, present a radiocarbon date for one of the individuals, and compare craniodental morphological diversity among eastern African populations. MATERIALS AND METHODS: This study used standard biometric analyses to assess the age, sex, and stature of the Kisese II individuals. Eastern African craniodental morphological variation was assessed using measures of dental size and a subset of Howells' cranial measurements for the Kisese II individuals as well as early Holocene, early pastoralist, Pastoral Neolithic, and modern African individuals. RESULTS: Our results suggest a minimum of six individuals from the Kisese II collections with two adults and four juveniles. While the dating for most of the burials is uncertain, one individual is directly radiocarbon dated to ~7.1 ka indicating that at least one burial is early Holocene in age. Craniodental metric comparisons indicate that the Kisese II individuals extend the amount of human morphological diversity among Holocene eastern Africans. CONCLUSIONS: Our findings contribute to a growing body of evidence that Late Pleistocene and early Holocene eastern Africans exhibited relatively high amounts of morphological diversity. However, the Kisese II individuals suggest morphological similarity at localized sites potentially supporting increased regionalization during the early Holocene.


Asunto(s)
Entierro/historia , Adolescente , Adulto , Antropología Física , Huesos/anatomía & histología , Preescolar , Femenino , Historia Antigua , Humanos , Masculino , Tanzanía , Adulto Joven
12.
Gen Comp Endocrinol ; 300: 113644, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33045233

RESUMEN

Urinary C-peptide (UCP) is a biomarker for insulin that can be used as a non-invasive physiological measure of energy balance. Previous research has validated the use of UCP to quantify energy balance in catarrhines; however, there have been no such studies in platyrrhines. Validation is necessary in this lineage of primates as divergent evolution has resulted in varied organization of insulin genes. Here, we evaluate a method for quantifying UCP in platyrrhines to measure energetic expenditure, a key component of calculating energy balance. Urine samples were opportunistically collected from laboratory-housed tufted capuchins (Sapajus apella) during exercise activities. To examine the efficacy of using UCP as a means for assessing energetic condition, we analyzed urine samples collected before and after exercise. Urinary C-peptide concentrations were measured using a commercial C-peptide radioimmunoassay. We found that on average, UCP concentrations were 0.34 ng/mL lower after exercise than they were prior to exercise (range =0.04 to 0.71 ng/mL). The rateofenergy expenditureper unit time was greater when capuchins were exercising at faster speeds. Concordantly, UCP concentrations decreased more following exercise at those faster speeds. Parallelism of serial dilutions of samples was calculated to assess the precision of UCP concentrations produced using these methods. Measured UCP concentrations decreased at expected intervals in accordance with each dilution factor. Our results provide biological validation of the use of a commercial assay for quantifying UCP as a measure of energy expenditure in this platyrrhine species.


Asunto(s)
Péptido C/orina , Urinálisis/métodos , Animales , Metabolismo Basal , Biomarcadores/orina , Cebus , Femenino , Reproducibilidad de los Resultados
13.
Sci Rep ; 10(1): 20850, 2020 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-33257755

RESUMEN

The biomechanical and adaptive significance of variation in craniodental and mandibular morphology in fossil hominins is not always clear, at least in part because of a poor understanding of how different feeding behaviors impact feeding system design (form-function relationships). While laboratory studies suggest that ingestive behaviors produce variable loading, stress, and strain regimes in the cranium and mandible, understanding the relative importance of these behaviors for feeding system design requires data on their use in wild populations. Here we assess the frequencies and durations of manual, ingestive, and masticatory behaviors from more than 1400 observations of feeding behaviors video-recorded in a wild population of bearded capuchins (Sapajus libidinosus) at Fazenda Boa Vista in Piauí, Brazil. Our results suggest that ingestive behaviors in wild Sapajus libidinosus were used for a range of food material properties and typically performed using the anterior dentition. Coupled with previous laboratory work indicating that ingestive behaviors are associated with higher mandibular strain magnitudes than mastication, these results suggest that ingestive behaviors may play an important role in craniodental and mandibular design in capuchins and may be reflected in robust adaptations in fossil hominins.


Asunto(s)
Cebinae/metabolismo , Conducta Alimentaria/fisiología , Masticación/fisiología , Animales , Animales Salvajes , Antropología Física/métodos , Evolución Biológica , Fenómenos Biomecánicos , Ingestión de Alimentos/fisiología , Femenino , Masculino , Mandíbula/fisiología
14.
Sci Rep ; 10(1): 6410, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32286442

RESUMEN

Jaw-muscle architecture is a key determinant of jaw movements and bite force. While static length-force and force-velocity relationships are well documented in mammals, architecture dynamics of the chewing muscles and their impact on muscle performance are largely unknown. We provide novel data on how fiber architecture of the superficial anterior temporalis (SAT) varies dynamically during naturalistic feeding in tufted capuchins (Sapajus apella). We collected data on architecture dynamics (changes in muscle shape or the architectural gear ratio) during the gape cycle while subjects fed on foods of different mechanical properties. Architecture of the SAT varied with phases of the gape cycle, but gape distance accounted for the majority of dynamic changes in architecture. In addition, lower gear ratios (low muscle velocity relative to fascicle velocity) were observed when animals chewed on more mechanically resistant foods. At lower gear ratios, fibers rotated less during shortening resulting in smaller pinnation angles, a configuration that favors increased force production. Our results suggest that architectural dynamics may influence jaw-muscle performance by enabling the production of higher bite forces during the occlusal phase of the gape cycle and while processing mechanically challenging foods.


Asunto(s)
Masticación/fisiología , Músculo Temporal/anatomía & histología , Músculo Temporal/fisiología , Animales , Fenómenos Biomecánicos , Cebus , Femenino
15.
J Hum Evol ; 139: 102639, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31841671

RESUMEN

Understanding the influence of feeding behavior on mandibular morphology is necessary for interpreting dietary change in fossil hominins. However, mandibular morphology is also likely to have an effect on feeding behavior, including jaw kinematics. Here we examine the relationships between mandibular morphology and jaw kinematics in humans using landmark-based morphometrics to quantify jaw movement. Three-dimensional movements of reflective markers coupled to the mandible and cranium were used to capture jaw movements while subjects chewed cubes of raw and cooked sweet potato. Geometric morphometric methods were adapted to quantify and analyze gape cycle motion paths. Gape cycles varied significantly across chewing sequences and between raw and cooked sweet potato. Variation in gape cycle size and shape is related to the width (intergonial distance) and length of the mandible. These results underline the fact that jaw kinematic variation within and between taxa is related to and may be influenced by mandibular morphology. Future studies examining kinematic variation should assess the influence of morphological differences on movement.


Asunto(s)
Maxilares/anatomía & histología , Maxilares/fisiología , Adulto , Fenómenos Biomecánicos , Femenino , Humanos , Masculino , Masticación , Adulto Joven
16.
J Hum Evol ; 132: 1-14, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31203841

RESUMEN

Excavations in the Lesedi Chamber (U.W. 102) of the Rising Star cave system from 2013 to 2015 resulted in the recovery of 131 fossils representing at least three individuals attributed to Homo naledi. Hominin fossils were recovered from three collection areas within the Lesedi Chamber. A partial skull with near complete dentition (LES1) and an associated partial skeleton were recovered from Area 102a, while craniodental remains from two other individuals were recovered from Areas 102b and 102c. Here we present detailed anatomical descriptions and metrical comparisons of the Lesedi Chamber H. naledi craniodental remains that preserve diagnostic morphology. The LES1 skull is a presumed male that is slightly larger in size, and shows greater development of ectocranial structures compared to other H. naledi specimens from the Dinaledi Chamber of the Rising Star cave system. Otherwise the Lesedi fossils are notably similar to the Dinaledi fossils in shape and morphology. The Lesedi fossils also preserve the delicate nasal and lacrimal bones that are otherwise unrecorded in the Dinaledi sample. Limited morphological differences between the Dinaledi and Lesedi Chamber hominin samples provides support for the hypothesis that these two assemblages share a close phyletic relationship.


Asunto(s)
Fósiles/anatomía & histología , Hominidae/anatomía & histología , Cráneo/anatomía & histología , Animales , Cuevas , Glicoproteínas de Membrana , Receptores de Interleucina-1 , Sudáfrica
17.
Am J Primatol ; 81(5): e22981, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31066472

RESUMEN

The study of adaptation requires the integration of an array of different types of data. A single individual can find such integration daunting, if not impossible. In an effort to clarify the role of diet in the evolution of the primate craniofacial and dental apparatus, we assembled a team of researchers that have various types and degrees of expertise. This interaction has provided a range of insights for all contributors, and this has helped to refine questions, clarify the possibilities and limitations that laboratory and field settings offer, and further explore the ways in which laboratory and field data can be suitably integrated. A complete and accurate picture of dietary adaptation cannot be gained in isolation. Collaboration provides the bridge to a more holistic view of primate biology and evolution.


Asunto(s)
Conducta Alimentaria , Primates/anatomía & histología , Primates/fisiología , Adaptación Biológica , Animales , Dentición , Dieta/veterinaria , Cráneo/anatomía & histología
18.
J Exp Biol ; 222(Pt 9)2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-30967515

RESUMEN

Tetrapod musculoskeletal diversity is usually studied separately in feeding and locomotor systems. However, comparisons between these systems promise important insight into how natural selection deploys the same basic musculoskeletal toolkit - connective tissues, bones, nerves and skeletal muscle - to meet the differing performance criteria of feeding and locomotion. In this study, we compare average joint angular excursions during cyclic behaviors - chewing, walking and running - in a phylogenetic context to explore differences in the optimality criteria of these two systems. Across 111 tetrapod species, average limb-joint angular excursions during cyclic locomotion are greater and more evolutionarily labile than those of the jaw joint during cyclic chewing. We argue that these findings reflect fundamental functional dichotomies between tetrapod locomotor and feeding systems. Tetrapod chewing systems are optimized for precise application of force over a narrower, more controlled and predictable range of displacements, the principal aim being to fracture the substrate, the size and mechanical properties of which are controlled at ingestion and further reduced and homogenized, respectively, by the chewing process. In contrast, tetrapod limbed locomotor systems are optimized for fast and energetically efficient application of force over a wider and less predictable range of displacements, the principal aim being to move the organism at varying speeds relative to a substrate whose geometry and mechanical properties need not become more homogeneous as locomotion proceeds. Hence, the evolution of tetrapod locomotor systems has been accompanied by an increasing diversity of limb-joint excursions, as tetrapods have expanded across a range of locomotor substrates and environments.


Asunto(s)
Aves/fisiología , Conducta Alimentaria , Articulaciones/fisiología , Locomoción , Mamíferos/fisiología , Reptiles/fisiología , Animales
19.
J Hum Evol ; 118: 27-42, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29606201

RESUMEN

Detailed analyses and comparisons of postcranial specimens of Plio-Pleistocene cercopithecids provide an opportunity to examine the recent evolutionary history and locomotor diversity in Old World monkeys. Studies examining the positional behavior and substrate preferences of fossil cercopithecids are also important for reconstructing the paleoenvironments of Plio-Pleistocene hominin sites. Here we describe a new fossil cercopithecid tibia (EP 1100/12) from the Australopithecus afarensis-bearing Upper Laetolil Beds (∼3.7 Ma) of Laetoli in northern Tanzania. The fossil tibia is attributed to cf. Rhinocolobus sp., which is the most common colobine at Laetoli. In addition to qualitative comparisons, the tibial shape of EP 1100/12 was compared to that of 190 extant cercopithecids using three-dimensional landmarks. Discriminant function analyses of the shape data were used to assess taxonomic affinity and shape variation relating to positional behavior. EP 1100/12 clustered with extant colobines, particularly the large-bodied genera Nasalis and Rhinopithecus. Comparisons reveal that EP 1100/12 belongs to a large-bodied monkey that engaged in arboreal pronograde quadrupedalism. These findings add further support to previous inferences that woodland and forest environments dominated the paleoenvironment of the Upper Laetolil Beds, which supported the diverse community of cercopithecids at Laetoli. The inferred paleoecology and the presence of large-bodied arboreally-adapted monkeys at Laetoli show that A. afarensis had access to a range of diverse habitats, including woodlands and forests. This supports the possibility that A. afarensis, with its potential range of positional capabilities, was able to utilize arboreal settings for food acquisition and refuge from predators.


Asunto(s)
Colobinae/anatomía & histología , Colobinae/fisiología , Fósiles/anatomía & histología , Locomoción , Tibia/anatomía & histología , Animales , Evolución Biológica , Colobinae/clasificación , Ecosistema , Masculino , Tanzanía
20.
PLoS One ; 13(2): e0192029, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29489827

RESUMEN

The archaeology of East Africa during the last ~65,000 years plays a central role in debates about the origins and dispersal of modern humans, Homo sapiens. Despite the historical importance of the region to these discussions, reliable chronologies for the nature, tempo, and timing of human behavioral changes seen among Middle Stone Age (MSA) and Later Stone Age (LSA) archaeological assemblages are sparse. The Kisese II rockshelter in the Kondoa region of Tanzania, originally excavated in 1956, preserves a ≥ 6-m-thick archaeological succession that spans the MSA/LSA transition, with lithic artifacts such as Levallois and bladelet cores and backed microliths, the recurrent use of red ochre, and >5,000 ostrich eggshell beads and bead fragments. Twenty-nine radiocarbon dates on ostrich eggshell carbonate make Kisese II one of the most robust chronological sequences for understanding archaeological change over the last ~47,000 years in East Africa. In particular, ostrich eggshell beads and backed microliths appear by 46-42 ka cal BP and occur throughout overlying Late Pleistocene and Holocene strata. Changes in lithic technology suggest an MSA/LSA transition that began 39-34.3 ka, with typical LSA technologies in place by the Last Glacial Maximum. The timing of these changes demonstrates the time-transgressive nature of behavioral innovations often linked to the origins of modern humans, even within a single region of Africa.


Asunto(s)
Arqueología , Animales , Radioisótopos de Carbono/análisis , Fósiles , Humanos , Tanzanía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA