Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cancers (Basel) ; 16(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38672658

RESUMEN

The performance of minimally invasive molecular diagnostic tools in brain tumors, such as liquid biopsy, has so far been limited by the blood-brain barrier (BBB). The BBB hinders the release of brain tumor biomarkers into the bloodstream. The use of focused ultrasound in conjunction with microbubbles has been shown to temporarily open the BBB (FUS-BBBO). This may enhance blood-based tumor biomarker levels. This systematic review provides an overview of the data regarding FUS-BBBO-enhanced liquid biopsy for primary brain tumors. A systematic search was conducted in PubMed and Embase databases with key terms "brain tumors", "liquid biopsy", "FUS" and their synonyms, in accordance with PRISMA statement guidelines. Five preclinical and two clinical studies were included. Preclinical studies utilized mouse, rat and porcine glioma models. Biomarker levels were found to be higher in sonicated groups compared to control groups. Both stable and inertial microbubble cavitation increased biomarker levels, whereas only inertial cavitation induced microhemorrhages. In clinical studies involving 14 patients with high-grade brain tumors, biomarker levels were increased after FUS-BBBO with stable cavitation. In conclusion, FUS-BBBO-enhanced liquid biopsy using stable cavitation shows diagnostic potential for primary brain tumors. Further research is imperative before integrating FUS-BBBO for liquid biopsy enhancement into clinical practice.

2.
Front Oncol ; 13: 1209150, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37664065

RESUMEN

Background and aims: Solid tumors account for about 30% of all pediatric cancers. The diagnosis is typically based on histological and molecular analysis of a primary tumor biopsy. Liquid biopsies carry several advantages over conventional tissue biopsy. However, their use for genomic analysis and response monitoring of pediatric solid tumors is still in experimental stages and mostly performed retrospectively without direct impact on patient management. In this case series we discuss six clinical cases of children with a solid tumor for whom a liquid biopsy assay was performed and demonstrate the potential of liquid biopsy for future clinical decision making. Methods: We performed quantitative real-time PCR (RT-qPCR), droplet digital PCR (ddPCR) or reduced representation bisulphite sequencing of cell-free DNA (cfRRBS) on liquid biopsies collected from six pediatric patients with a solid tumor treated between 2017 and 2023 at the Princess Máxima Center for Pediatric Oncology in the Netherlands. Results were used to aid in clinical decision making by contribution to establish a diagnosis, by prognostication and response to therapy monitoring. Results: In three patients cfRRBS helped to establish the diagnosis of a rhabdomyosarcoma, an Ewing sarcoma and a neuroblastoma (case 1-3). In two patients, liquid biopsies were used for prognostication, by MYCN ddPCR in a patient with neuroblastoma and by RT-qPCR testing rhabdomyosarcoma-specific mRNA in bone marrow of a patient with a rhabdomyosarcoma (case 4 and 5). In case 6, mRNA testing demonstrated disease progression and assisted clinical decision making. Conclusion: This case series illustrates the value of liquid biopsy. We further demonstrate and recommend the use of liquid biopsies to be used in conjunction with conventional methods for the determination of metastatic status, prognostication and monitoring of treatment response in patients with pediatric solid tumors.

3.
Front Oncol ; 13: 1124737, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152023

RESUMEN

Background: Liquid biopsies combine minimally invasive sample collection with sensitive detection of residual disease. Pediatric malignancies harbor tumor-driving copy number alterations or fusion genes, rather than recurrent point mutations. These regions contain tumor-specific DNA breakpoint sequences. We investigated the feasibility to use these breakpoints to design patient-specific markers to detect tumor-derived cell-free DNA (cfDNA) in plasma from patients with pediatric solid tumors. Materials and methods: Regions of interest (ROI) were identified through standard clinical diagnostic pipelines, using SNP array for CNAs, and FISH or RT-qPCR for fusion genes. Using targeted locus amplification (TLA) on tumor organoids grown from tumor material or targeted locus capture (TLC) on FFPE material, ROI-specific primers and probes were designed, which were used to design droplet digital PCR (ddPCR) assays. cfDNA from patient plasma at diagnosis and during therapy was analyzed. Results: TLA was performed on material from 2 rhabdomyosarcoma, 1 Ewing sarcoma and 3 neuroblastoma. FFPE-TLC was performed on 8 neuroblastoma tumors. For all patients, at least one patient-specific ddPCR was successfully designed and in all diagnostic plasma samples the patient-specific markers were detected. In the rhabdomyosarcoma and Ewing sarcoma patients, all samples after start of therapy were negative. In neuroblastoma patients, presence of patient-specific markers in cfDNA tracked tumor burden, decreasing during induction therapy, disappearing at complete remission and re-appearing at relapse. Conclusion: We demonstrate the feasibility to determine tumor-specific breakpoints using TLA/TLC in different pediatric solid tumors and use these for analysis of cfDNA from plasma. Considering the high prevalence of CNAs and fusion genes in pediatric solid tumors, this approach holds great promise and deserves further study in a larger cohort with standardized plasma sampling protocols.

4.
Cancers (Basel) ; 15(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37046768

RESUMEN

Neuroblastoma affects mostly young children, bearing a high morbidity and mortality. Liquid biopsies, e.g., molecular analysis of circulating tumor-derived nucleic acids in blood, offer a minimally invasive diagnostic modality. Cell-free RNA (cfRNA) is released by all cells, especially cancer. It circulates in blood packed in extracellular vesicles (EV) or attached to proteins. We studied the feasibility of analyzing cfRNA and EV, isolated by size exclusion chromatography (SEC), from platelet-poor plasma from healthy controls (n = 40) and neuroblastoma patients with localized (n = 10) and metastatic disease (n = 30). The mRNA content was determined using several multiplex droplet digital PCR (ddPCR) assays for a neuroblastoma-specific gene panel (PHOX2B, TH, CHRNA3) and a cell cycle regulation panel (E2F1, CDC6, ATAD2, H2AFZ, MCM2, DHFR). We applied corrections for the presence of platelets. We demonstrated that neuroblastoma-specific markers were present in plasma from 14/30 patients with metastatic disease and not in healthy controls and patients with localized disease. Most cell cycle markers had a higher expression in patients. The mRNA markers were mostly present in the EV-enriched SEC fractions. In conclusion, cfRNA can be isolated from plasma and EV and analyzed using multiplex ddPCR. cfRNA is an interesting novel liquid biopsy-based target to explore further.

5.
JCO Precis Oncol ; 7: e2200113, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36652664

RESUMEN

PURPOSE: Total cell-free DNA (cfDNA) and tumor-derived cfDNA (ctDNA) can be used to study tumor-derived genetic aberrations. We analyzed the diagnostic and prognostic potential of cfDNA and ctDNA, obtained from pediatric patients with rhabdomyosarcoma. METHODS: cfDNA was isolated from diagnostic plasma samples from 57 patients enrolled in the EpSSG RMS2005 study. To study the diagnostic potential, shallow whole genome sequencing (shWGS) and cell-free reduced representation bisulphite sequencing (cfRRBS) were performed in a subset of samples and all samples were tested using droplet digital polymerase chain reaction to detect methylated RASSF1A (RASSF1A-M). Correlation with outcome was studied by combining cfDNA RASSF1A-M detection with analysis of our rhabdomyosarcoma-specific RNA panel in paired cellular blood and bone marrow fractions and survival analysis in 56 patients. RESULTS: At diagnosis, ctDNA was detected in 16 of 30 and 24 of 26 patients using shallow whole genome sequencing and cfRRBS, respectively. Furthermore, 21 of 25 samples were correctly classified as embryonal by cfRRBS. RASSF1A-M was detected in 21 of 57 patients. The presence of RASSF1A-M was significantly correlated with poor outcome (the 5-year event-free survival [EFS] rate was 46.2% for 21 RASSF1A-M‒positive patients, compared with 84.9% for 36 RASSF1A-M‒negative patients [P < .001]). RASSF1A-M positivity had the highest prognostic effect among patients with metastatic disease. Patients both negative for RASSF1A-M and the rhabdomyosarcoma-specific RNA panel (28 of 56 patients) had excellent outcome (5-year EFS 92.9%), while double-positive patients (11/56) had poor outcome (5-year EFS 13.6%, P < .001). CONCLUSION: Analyzing ctDNA at diagnosis using various techniques is feasible in pediatric rhabdomyosarcoma and has potential for clinical use. Measuring RASSF1A-M in plasma at initial diagnosis correlated significantly with outcome, particularly when combined with paired analysis of blood and bone marrow using a rhabdomyosarcoma-specific RNA panel.


Asunto(s)
Ácidos Nucleicos Libres de Células , Rabdomiosarcoma , Humanos , Niño , Ácidos Nucleicos Libres de Células/genética , Pronóstico , Rabdomiosarcoma/diagnóstico , Rabdomiosarcoma/genética , ARN , Biomarcadores
6.
JCO Precis Oncol ; 6: e2100534, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36265118

RESUMEN

PURPOSE: Rhabdomyosarcomas (RMS) are rare neoplasms affecting children and young adults. Efforts to improve patient survival have been undermined by a lack of suitable disease markers. Plasma circulating tumor DNA (ctDNA) has shown promise as a potential minimally invasive biomarker and monitoring tool in other cancers; however, it remains underexplored in RMS. We aimed to determine the feasibility of identifying and quantifying ctDNA in plasma as a marker of disease burden and/or treatment response using blood samples from RMS mouse models and patients. METHODS: We established mouse models of RMS and applied quantitative polymerase chain reaction (PCR) and droplet digital PCR (ddPCR) to detect ctDNA within the mouse plasma. Potential driver mutations, copy-number alterations, and DNA breakpoints associated with PAX3/7-FOXO1 gene fusions were identified in the RMS samples collected at diagnosis. Patient-matched plasma samples collected from 28 patients with RMS before, during, and after treatment were analyzed for the presence of ctDNA via ddPCR, panel sequencing, and/or whole-exome sequencing. RESULTS: Human tumor-derived DNA was detectable in plasma samples from mouse models of RMS and correlated with tumor burden. In patients, ctDNA was detected in 14/18 pretreatment plasma samples with ddPCR and 7/7 cases assessed by sequencing. Levels of ctDNA at diagnosis were significantly higher in patients with unfavorable tumor sites, positive nodal status, and metastasis. In patients with serial plasma samples (n = 18), fluctuations in ctDNA levels corresponded to treatment response. CONCLUSION: Comprehensive ctDNA analysis combining high sensitivity and throughput can identify key molecular drivers in RMS models and patients, suggesting potential as a minimally invasive biomarker. Preclinical assessment of treatments using mouse models and further patient testing through prospective clinical trials are now warranted.


Asunto(s)
ADN Tumoral Circulante , Neoplasias , Rabdomiosarcoma Embrionario , Humanos , Niño , Ratones , Animales , ADN Tumoral Circulante/genética , Estudios de Factibilidad , Estudios Prospectivos , Biomarcadores de Tumor/genética , Mutación
7.
Front Oncol ; 12: 887210, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35686092

RESUMEN

Virtually every cell in the body releases extracellular vesicles (EVs), the contents of which can provide a "fingerprint" of their cellular origin. EVs are present in all bodily fluids and can be obtained using minimally invasive techniques. Thus, EVs can provide a promising source of diagnostic, prognostic, and predictive biomarkers, particularly in the context of cancer. Despite advances using EVs as biomarkers in adult cancers, little is known regarding their use in pediatric cancers. In this review, we provide an overview of published clinical and in vitro studies in order to assess the potential of using EV-derived biomarkers in pediatric solid tumors. We performed a systematic literature search, which yielded studies regarding desmoplastic small round cell tumor, hepatoblastoma, neuroblastoma, osteosarcoma, and rhabdomyosarcoma. We then determined the extent to which the in vivo findings are supported by in vitro data, and vice versa. We also critically evaluated the clinical studies using the GRADE (Grading of Recommendations Assessment, Development, and Evaluation) system, and we evaluated the purification and characterization of EVs in both the in vivo and in vitro studies in accordance with MISEV guidelines, yielding EV-TRACK and PedEV scores. We found that several studies identified similar miRNAs in overlapping and distinct tumor entities, indicating the potential for EV-derived biomarkers. However, most studies regarding EV-based biomarkers in pediatric solid tumors lack a standardized system of reporting their EV purification and characterization methods, as well as validation in an independent cohort, which are needed in order to bring EV-based biomarkers to the clinic.

8.
Eur J Cancer ; 160: 12-23, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34794856

RESUMEN

BACKGROUND: Paediatric tumours are often characterised by the presence of recurrent DNA copy number alterations (CNAs). These DNA copy number profiles, obtained from a tissue biopsy, can aid in the correct prognostic classification and therapeutic stratification of several paediatric cancer entities (e.g. MYCN amplification in neuroblastoma) and are part of the routine diagnostic practice. Liquid biopsies (LQBs) offer a potentially safer alternative for such invasive tumour tissue biopsies and can provide deeper insight into tumour heterogeneity. PROCEDURE: The robustness and reliability of LQB CNA analyses was evaluated. We performed retrospective CNA profiling using shallow whole-genome sequencing (sWGS) on paired plasma circulating cell-free DNA (cfDNA) and tissue DNA samples from routinely collected samples from paediatric patients (n = 128) representing different tumour entities, including osteosarcoma, Ewing sarcoma, rhabdomyosarcoma, Wilms tumour, brain tumours and neuroblastoma. RESULTS: Overall, we observed a good concordance between CNAs in tissue DNA and cfDNA. The main cause of CNA discordance was found to be low cfDNA sample quality (i.e. the ratio of cfDNA (<700 bp) and high molecular weight DNA (>700 bp)). Furthermore, CNAs were observed that were present in cfDNA and not in tissue DNA, or vice-versa. In neuroblastoma samples, no false-positives or false-negatives were identified for the detection of the prognostic marker MYCN amplification. CONCLUSION: In future prospective studies, CNA analysis on LQBs that are of sufficient quality can serve as a complementary assay for CNA analysis on tissue biopsies, as either cfDNA or tissue DNA can contain CNAs that cannot be identified in the other biomaterial.


Asunto(s)
Biomarcadores de Tumor/genética , Ácidos Nucleicos Libres de Células/genética , Variaciones en el Número de Copia de ADN/genética , Biopsia Líquida/métodos , Adolescente , Niño , Preescolar , Estudios de Factibilidad , Femenino , Humanos , Masculino , Estudios Prospectivos , Estudios Retrospectivos
9.
Artículo en Inglés | MEDLINE | ID: mdl-34820594

RESUMEN

Liquid biopsies can be used to investigate tumor-derived DNA, circulating in the cell-free DNA (cfDNA) pool in blood. We aimed to develop a droplet digital polymerase chain reaction (ddPCR) assay detecting hypermethylation of tumor suppressor gene RASSF1A as a simple standard test to detect various pediatric tumor types in small volume blood samples and to evaluate this test for monitoring treatment response of patients with high-risk neuroblastoma. METHODS: We developed a ddPCR assay to sensitively detect tumor-derived hypermethylated RASSF1A DNA in liquid biopsies. We tested this assay in plasma of 96 patients with neuroblastoma, renal tumors, rhabdomyosarcoma, or Hodgkin lymphoma at diagnosis and in cerebrospinal fluid of four patients with brain tumors. We evaluated the presence of hypermethylated RASSF1A in plasma samples during treatment and follow-up in 47 patients with neuroblastoma treated according to high-risk protocol and correlated results with blood mRNA-based and bone marrow mRNA-based minimal residual disease detection and clinical outcomes. RESULTS: The total cfDNA level was significantly higher in patients with metastatic neuroblastoma and nephroblastoma compared with healthy adult and pediatric controls. Hypermethylated RASSF1A was present in 41 of 42 patients with metastatic neuroblastoma and in all patients with nephroblastoma, with the median percentage of 69% and 21% of total RASSF1A, respectively. Hypermethylated RASSF1A levels decreased during therapy and recurred at relapse. CONCLUSION: Our findings demonstrate the value of ddPCR-based detection of hypermethylated RASSF1A as a circulating molecular tumor marker in neuroblastoma. Our preliminary investigation of RASSF1A hypermethylation detection in circulating cfDNA of other pediatric tumor entities demonstrates potential as a pan-tumor marker, but requires investigation in larger cohorts to evaluate its use and limitations.


Asunto(s)
ADN Tumoral Circulante/análisis , Metilación de ADN/genética , Proteínas Supresoras de Tumor/análisis , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/sangre , ADN Tumoral Circulante/sangre , Humanos , Pediatría/tendencias , Reacción en Cadena de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa/estadística & datos numéricos , Proteínas Supresoras de Tumor/sangre
10.
Clin Cancer Res ; 27(20): 5576-5585, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34285060

RESUMEN

PURPOSE: Survival of children with rhabdomyosarcoma that suffer from recurrent or progressive disease is poor. Identifying these patients upfront remains challenging, indicating a need for improvement of risk stratification. Detection of tumor-derived mRNA in bone marrow (BM) and peripheral blood (PB) using reverse-transcriptase qPCR (RT-qPCR) is a more sensitive method to detect disseminated disease. We identified a panel of genes to optimize risk stratification by RT-qPCR. EXPERIMENTAL DESIGN: Candidate genes were selected using gene expression data from rhabdomyosarcoma and healthy hematologic tissues, and a multiplexed RT-qPCR was developed. Significance of molecular disease was determined in a cohort of 99 Dutch patients with rhabdomyosarcoma (72 localized and 27 metastasized) treated according to the European pediatric Soft tissue sarcoma Study Group (EpSSG) RMS2005 protocol. RESULTS: We identified the following 11 rhabdomyosarcoma markers: ZIC1, ACTC1, MEGF10, PDLIM3, SNAI2, CDH11, TMEM47, MYOD1, MYOG, and PAX3/7-FOXO1. RT-qPCR was performed for this 11-marker panel on BM and PB samples from the patient cohort. Five-year event-free survival (EFS) was 35.5% [95% confidence interval (CI), 17.5%-53.5%] for the 33/99 RNA-positive patients, versus 88.0% (95% CI, 78.9%-97.2%) for the 66/99 RNA-negative patients (P < 0.0001). Five-year overall survival (OS) was 54.8% (95% CI, 36.2%-73.4%) and 93.7% (95% CI, 86.6%-100.0%), respectively (P < 0.0001). RNA panel positivity was negatively associated with EFS (Hazard Ratio = 9.52; 95% CI, 3.23-28.02), whereas the RMS2005 risk group stratification was not, in the multivariate Cox regression model. CONCLUSIONS: This study shows a strong association between PCR-based detection of disseminated disease at diagnosis with clinical outcome in pediatric patients with rhabdomyosarcoma, also compared with conventional risk stratification. This warrants further validation in prospective trials as additional technique for risk stratification.


Asunto(s)
Rabdomiosarcoma/epidemiología , Rabdomiosarcoma/genética , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Estudios Prospectivos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rabdomiosarcoma/diagnóstico , Rabdomiosarcoma/patología , Medición de Riesgo
11.
Cancers (Basel) ; 13(1)2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33466359

RESUMEN

mRNA RT-qPCR is shown to be a very sensitive technique to detect minimal residual disease (MRD) in patients with neuroblastoma. Multiple mRNA markers are known to detect heterogeneous neuroblastoma cells in bone marrow (BM) or blood from patients. However, the limited volumes of BM and blood available can hamper the detection of multiple markers. To make optimal use of these samples, we developed a multiplex RT-qPCR for the detection of MRD in neuroblastoma. GUSB and PHOX2B were tested as single markers. The adrenergic markers TH, GAP43, CHRNA3 and DBH and mesenchymal markers POSTN, PRRX1 and FMO3 were tested in multiplex. Using control blood and BM, we established new thresholds for positivity. Comparison of multiplex and singleplex RT-qPCR results from 21 blood and 24 BM samples from neuroblastoma patients demonstrated a comparable sensitivity. With this multiplex RT-qPCR, we are able to test seven different neuroblastoma mRNA markers, which overcomes tumor heterogeneity and improves sensitivity of MRD detection, even in those samples of low RNA quantity. With resources and time being saved, reduction in sample volume and consumables can assist in the introduction of MRD by RT-qPCR into clinical practice.

12.
Hemasphere ; 3(4): e276, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31723846

RESUMEN

Hereditary spherocytosis (HS) is a phenotypically and genetically heterogeneous disease. With the increased use of Next Generation Sequencing (NGS) techniques in the diagnosis of red blood cell disorders, the list of unique pathogenic mutations underlying HS is growing rapidly. In this study, we aimed to explore genotype-phenotype correlation in 95 HS patients genotyped by targeted NGS as part of routine diagnostics (UMC Utrecht, Utrecht, The Netherlands). In 85/95 (89%) of patients a pathogenic mutation was identified, including 56 novel mutations. SPTA1 mutations were most frequently encountered (36%, 31/85 patients), primarily in patients with autosomal recessive forms of HS. Three SPTA1 (α-spectrin) mutations showed autosomal dominant inheritance. ANK1 (ankyrin1) mutations accounted for 27% (23/85 patients) and SPTB (ß-spectrin) mutations for 20% (17/85 patients). Moderate or severe HS was more frequent in patients with SPTB or ANK1 mutations, reflected by lower hemoglobin concentrations and higher reticulocyte counts. Interestingly, mutations affecting spectrin association domains of ANK1, SPTA1 and SPTB resulted in more severe phenotypes. Additionally, we observed a clear association between phenotype and aspects of red cell deformability as determined by the Laser assisted Optical Rotational Cell Analyzer (LoRRca MaxSis). Both maximal deformability and area under the curve were negatively associated with disease severity (respectively r = -0.46, p < 0.01, and r = -0.39, p = 0.01). Genotype-phenotype prediction in HS facilitates insight in consequences of pathogenic mutations for the assembly and dynamic interactions of the red cell cytoskeleton. In addition, we show that measurements of red blood cell deformability are clearly correlated with HS severity.

13.
Pediatrics ; 130(4): e1030-3, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23008461

RESUMEN

A 1-year-old boy presented to the emergency department with drowsiness after intoxication from amitriptyline cream. The amitriptyline level in his blood was in the high-therapeutic range for adults. He was admitted for cardiac monitoring. Except for a short episode with irregular heart rate, he recovered completely within 24 hours without adjuvant treatment. Amitriptyline is known as an antidepressant but is also prescribed for neuropathic pain. It is usually prescribed in tablet form; the cream is a novel application. In children, intoxication with amitriptyline may cause drowsiness, seizures, coma, hypotension, tachycardia, and life-threatening cardiac arrhythmias. This is the first case report presenting intoxication in a child with amitriptyline cream. It stresses the importance of keeping children away from the medicine cabinet, even from creams or ointments.


Asunto(s)
Amitriptilina/envenenamiento , Antidepresivos Tricíclicos/envenenamiento , Arritmias Cardíacas/inducido químicamente , Arritmias Cardíacas/diagnóstico , Humanos , Lactante , Masculino , Intoxicación/complicaciones , Intoxicación/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...