Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Am J Physiol Cell Physiol ; 298(5): C982-92, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20164384

RESUMEN

The development of cell therapeutics from embryonic stem (ES) cells will require technologies that direct cell differentiation to specific somatic cell lineages in response to defined factors. The initial step in formation of the somatic lineages from ES cells, differentiation to an intermediate, pluripotent primitive ectoderm-like cell, can be achieved in vitro by formation of early primitive ectoderm-like (EPL) cells in response to a biological activity contained within the conditioned medium MEDII. Fractionation of MEDII has identified two activities required for EPL cell formation, an activity with a molecular mass of <3 kDa and a second, much larger species. Here, we have identified the low-molecular-weight activity as l-proline. An inhibitor of l-proline uptake, glycine, prevented the differentiation of ES cells in response to MEDII. Supplementation of the culture medium of ES cells with >100 M l-proline and some l-proline-containing peptides resulted in changes in colony morphology, cell proliferation, gene expression, and differentiation kinetics consistent with differentiation toward a primitive ectoderm-like cell. This activity appeared to be associated with l-proline since other amino acids and analogs of proline did not exhibit an equivalent activity. Activation of the mammalian target of rapamycin (mTOR) signaling pathway was found to be necessary but not sufficient for l-proline activity; addition of other activators of the mTOR signaling pathway failed to alter the ES cell phenotype. This is the first report describing a role for amino acids in the regulation of pluripotency and cell differentiation and identifies a novel role for the imino acid l-proline.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/fisiología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/fisiología , Prolina/farmacología , Animales , Línea Celular , Regulación de la Expresión Génica , Glicina/farmacología , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Leucina/farmacología , Ratones , Prolina/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR
2.
Virology ; 348(1): 141-55, 2006 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-16445956

RESUMEN

Astrocytes persistently infected with HIV-1 can transmit virus to CD4+ cells, suggesting that astrocytes may be a source of viral persistence and dissemination in the brain. In the present study, we investigated the fate of HIV-1 upon infection of astrocytes. HIV-1 was observed in vesicle-like structures. Unspliced genomic RNA and extrachromosomal HIV-1 DNA were detected in astrocytes, with levels declining over time. The extrachromosomal viral DNA was not de novo reverse transcribed in astrocytes but most likely the products of intravirion reverse transcription present in the virus inoculum. Integrated HIV-1 DNA was not detected in assays sensitive to detect 2 integrated copies of provirus. However, the majority of astrocyte cultures released infectious virus that could be transmitted to CD4+ cells. Our findings suggest a novel pathway of HIV-1 uptake and release in astrocytes that does not necessarily require virus replication, which may contribute to persistence and spread of HIV-1 in the brain.


Asunto(s)
Astrocitos/virología , VIH-1/fisiología , Astrocitos/química , Linfocitos T CD4-Positivos/virología , Vesículas Citoplasmáticas/virología , ADN Viral/análisis , Proteína p24 del Núcleo del VIH/análisis , Humanos , Microscopía Confocal , Microscopía Electrónica de Transmisión , Modelos Biológicos , ARN Viral/análisis , Factores de Tiempo , Integración Viral
3.
J Virol ; 78(19): 10574-81, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15367624

RESUMEN

Virion infectivity factor (Vif) protein of human immunodeficiency virus type 1 (HIV-1) is essential for the productive infection of primary human CD4 T lymphocytes and macrophages. Vif overcomes the HIV-inhibitory effects of cellular factor APOBEC3G, which has cytidine deaminase activity. We previously reported the isolation of a Vif-interacting ring finger protein, Triad 3, from a human leukocyte cDNA library, using the yeast two-hybrid system. The full-length cellular protein homologue of Triad 3 has been recently identified as the zinc finger protein inhibiting NF-kappaB (ZIN). Sequence analysis indicates that Triad 3 protein contains all four major ring-like motifs of ZIN. We report here that ZIN binds to purified Vif in vitro and that Triad 3/ZIN interacts with HIV-1 Vif in transfected human 293T cells, as demonstrated by coimmunoprecipitation. To test the biological relevance of this interaction, we produced infectious HIV-1 NL4.3 in the presence or absence of cotransfected ZIN. HIV-1 NL4.3 virus stocks produced in the presence of exogenously expressed ZIN were twofold less infectious in a single-cycle infectivity assay than virus produced in the absence of exogenous ZIN. It was further shown that cells infected with HIV NL4.3 virus stocks produced in the presence of exogenously expressed ZIN were impaired in viral DNA synthesis by twofold. The impairment in viral reverse transcription and the reduction in single-cycle viral infectivity were both shown to be dependent on the presence of Vif in the virus producer cells. The possible mechanisms by which ZIN interferes with the early events of HIV-1 replication are discussed.


Asunto(s)
Proteínas Portadoras/metabolismo , Productos del Gen vif/metabolismo , VIH-1/patogenicidad , Péptidos y Proteínas de Señalización Intracelular , Secuencia de Aminoácidos , Western Blotting , Proteínas Portadoras/genética , Línea Celular , ADN Viral/análisis , ADN Viral/biosíntesis , Eliminación de Gen , Regulación de la Expresión Génica , Productos del Gen vif/genética , Productos del Gen vif/aislamiento & purificación , VIH-1/genética , Humanos , Datos de Secuencia Molecular , Pruebas de Precipitina , Unión Proteica , ARN Mensajero/análisis , Transcripción Genética , Ubiquitina-Proteína Ligasas , Replicación Viral/fisiología , Dedos de Zinc , Productos del Gen vif del Virus de la Inmunodeficiencia Humana
4.
J Clin Virol ; 26(2): 143-52, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12600646

RESUMEN

BACKGROUND: Current research suggests that human immunodeficiency virus type-1 (HIV-1) virion infectivity factor (Vif) acts during viral assembly in producer cells to ensure infectivity in target cells but the exact mechanism of action has not been defined. Vif interacts with Gag, viral protease and RNA and these interactions are proposed to be important for correct particle assembly and stability of the reverse transcription complex. OBJECTIVES: The existence of cells that are either permissive or non-permissive for replication of Vif deficient viruses suggests the involvement of host cellular factors in its function. Current research suggests an association of Vif with the intermediate filament protein, vimentin, and the tyrosine kinase, Hck, but the significance of these associations remains to be defined. More recently HP68, a cellular ATP binding protein, has been shown to be important for capsid formation and an interaction between Vif and HP68 has been shown. Our aim was to further identify host cellular factors involved in Vif function. STUDY DESIGN: We have employed the yeast 2-hybrid system to identify cellular proteins which interact with HIV-1 Vif. Sixteen clones were isolated from a high stringency yeast-2-hybrid screen of a human leucocyte cDNA library with Vif derived from the T-cell tropic HIV-1 strain NL4.3. Of these, 8 clones were confirmed as specifically binding Vif, fully sequenced and identified via GenBank homology searches. RESULTS: Thus far 3 of these clones, spermine/spermidine N1-acetyltransferase, Triad 3 and a novel gene which we have termed 'novel Vif binding protein', have been characterised and represent attractive candidates for mediating Vif action during HIV replication. CONCLUSIONS: Through identification and characterisation of cellular factors interacting with HIV-1 Vif we hope to unravel the mechanism of action of Vif which may ultimately aid therapeutic design.


Asunto(s)
Productos del Gen vif/fisiología , Infecciones por VIH/virología , VIH-1/fisiología , Productos del Gen vif/genética , Infecciones por VIH/etiología , VIH-1/genética , Humanos , Mutación , Unión Proteica , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-hck , ARN Viral/metabolismo , Transcripción Genética , Técnicas del Sistema de Dos Híbridos , Vimentina/metabolismo , Proteínas Virales/metabolismo , Ensamble de Virus , Replicación Viral , Productos del Gen vif del Virus de la Inmunodeficiencia Humana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA