Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Foods ; 13(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38672871

RESUMEN

Studying diversity in local barley varieties can help advance novel uses for the grain. Therefore, starch was isolated from nine Ethiopian food barley varieties to determine starch structural, pasting, thermal, and digestibility characteristics, as well as their inter-relationships. The amylose content in the varieties significantly varied from 24.5 to 30.3%, with a coefficient of variation of 6.1%. The chain length distributions also varied significantly, and fa, fb1, fb2, and fb3 ranged from 26.3 to 29.0, 48.0 to 49.7, 15.0 to 15.9, and 7.5 to 9.5%, respectively. Significant variations were also exhibited in absorbance peak ratios, as well as thermal, pasting, and in vitro digestibility properties, with the latter two parameters showing the greatest diversity. Higher contents of amylose and long amylopectin fractions contributed to higher gelatinization temperatures and viscosities and lower digestibility. Structural characteristics showed strong relationships with viscosity, thermal, and in vitro digestibility properties. Cross 41/98 and Dimtu varieties are more suitable in functional food formulations and for bakery products. These results might inspire further studies to suggest target-based starch modifications and new product development.

2.
Int J Biol Macromol ; 256(Pt 1): 128407, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38007010

RESUMEN

Characterization of local varietal barley quality diversity can help boost further development of novel value-added utilization of the grain. Therefore, in this study starch was isolated from 11 Ethiopian malting barley varieties to determine starch structural, pasting, thermal and digestibility characteristics, and their inter-relationships. The varieties showed significant differences in all amylopectin chain length fractions, and the A, B1, B2 and B3 chains ranged from 25.4 to 30.1, 47.4-50.1, 14.3-16.0 and 7.8-9.0 %, respectively. The varieties also exhibited significant variation in amylose content, relative crystallinity, absorbance peak ratios, pasting and thermal properties. Moreover, on average about 83 % raw starch of the varieties was classified as slowly digestible and resistant, whereas after gelatinization this was reduced to 9 %. Molecular and crystalline structures were strongly related to pasting properties, thermal characteristics and in vitro digestibility of the starches. The study provides information on some starch quality characteristics and the inter-relationships among the parameters, and might inspire further studies to suggest possible target-based starch modifications, and future novel utilization of barley. More studies are required to investigate the association of starch quality parameters with malting quality attributes.


Asunto(s)
Hordeum , Almidón , Almidón/química , Estructura Molecular , Amilopectina/química , Amilosa/química , Viscosidad
3.
BMC Genom Data ; 24(1): 7, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36788500

RESUMEN

BACKGROUND: High-density single nucleotide polymorphisms (SNPs) are the most abundant and robust form of genetic variants and hence make highly favorable markers to determine the genetic diversity and relationship, enhancing the selection of breeding materials and the discovery of novel genes associated with economically important traits. In this study, a total of 105 barley genotypes were sampled from various agro-ecologies of Ethiopia and genotyped using 10 K single nucleotide polymorphism (SNP) markers. The refined dataset was used to assess genetic diversity and population structure. RESULTS: The average gene diversity was 0.253, polymorphism information content (PIC) of 0.216, and minor allelic frequency (MAF) of 0.118 this revealed a high genetic variation in barley genotypes. The genetic differentiation also showed the existence of variations, ranging from 0.019 to 0.117, indicating moderate genetic differentiation between barley populations. Analysis of molecular variance (AMOVA) revealed that 46.43% and 52.85% of the total genetic variation occurred within the accessions and populations, respectively. The heat map, principal components and population structure analysis further confirm the presence of four distinct clusters. CONCLUSIONS: This study confirmed that there is substantial genetic variation among the different barley genotypes. This information is useful in genomics, genetics and barley breeding.


Asunto(s)
Hordeum , Polimorfismo de Nucleótido Simple , Polimorfismo de Nucleótido Simple/genética , Variación Genética/genética , Hordeum/genética , Fitomejoramiento , Frecuencia de los Genes/genética
4.
Heliyon ; 8(10): e10949, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36262303

RESUMEN

Ethiopian barley germplasm is a potential source of useful traits to fight the production challenges of barley farming and to enhance yield productivity in favorable and marginal environments. A study was carried out to assess the distribution and patterns of 17 qualitative trait variations among 85 Ethiopian barley accessions using an alpha lattice design with two replications. The Shannon-Weaver diversity (H') index was used to estimate morphological diversity. Fifteen morphological traits of barley accessions originating from various regions of origins and altitude ranges were polymorphic. However, two traits including stem branching and lemma awn were monomorphic. The highest (0.94) overall mean of H' was obtained for glume colour, kernel row and kernel shape. The estimated H' ranged from 0.41 to 0.99 across regions, and 0.52 to 0.99 across altitude ranges with an overall mean of 0.76. The analysis of variance of H' showed significant variation for most studied traits. Principal components analysis revealed that eight traits were the major loading on the first two principal components that describe 38.3% of the total morphological variance. Heat map analysis based on morphological traits of barley accessions was also grouped into three distinct clusters. Thus, the present finding confirmed that the Ethiopian barley accessions showed vast morphological variations across the region of origins and altitude ranges. Based on the result, further evaluation is ongoing to exploit specific gene variations through phenotyping and genotyping trait association.

5.
Sci Rep ; 11(1): 15967, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34354105

RESUMEN

Barley production worldwide is limited by several abiotic and biotic stresses and breeding of highly productive and adapted varieties is key to overcome these challenges. Leaf scald, caused by Rhynchosporium commune is a major disease of barley that requires the identification of novel sources of resistance. In this study two subsets of genebank accessions were used: one extracted from the Reference set developed within the Generation Challenge Program (GCP) with 191 accessions, and the other with 101 accessions selected using the filtering approach of the Focused Identification of Germplasm Strategy (FIGS). These subsets were evaluated for resistance to scald at the seedling stage under controlled conditions using two Moroccan isolates, and at the adult plant stage in Ethiopia and Morocco. The results showed that both GCP and FIGS subsets were able to identify sources of resistance to leaf scald at both plant growth stages. In addition, the test of independence and goodness of fit showed that FIGS filtering approach was able to capture higher percentages of resistant accessions compared to GCP subset at the seedling stage against two Moroccan scald isolates, and at the adult plant stage against four field populations of Morocco and Ethiopia, with the exception of Holetta nursery 2017. Furthermore, four machine learning models were tuned on training sets to predict scald reactions on the test sets based on diverse metrics (accuracy, specificity, and Kappa). All models efficiently identified resistant accessions with specificities higher than 0.88 but showed different performances between isolates at the seedling and to field populations at the adult plant stage. The findings of our study will help in fine-tuning FIGS approach using machine learning for the selection of best-bet subsets for resistance to scald disease from the large number of genebank accessions.


Asunto(s)
Ascomicetos/patogenicidad , Resistencia a la Enfermedad/genética , Hordeum/genética , Algoritmos , Ascomicetos/genética , Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Bases de Datos Genéticas , Genes de Plantas/genética , Genotipo , Aprendizaje Automático , Modelos Teóricos , Marruecos , Fenotipo , Fitomejoramiento/métodos , Enfermedades de las Plantas , Hojas de la Planta/genética , Sitios de Carácter Cuantitativo/genética , Plantones/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...