Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Process Impacts ; 26(2): 305-322, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38108243

RESUMEN

Indoor surfaces are coated with organic films that modulate thermodynamic interactions between the surfaces and room air. Recently published models can simulate film formation and growth via gas-surface partitioning, but none have statistically investigated film composition. The Indoor Model of Aerosols, Gases, Emissions, and Surfaces (IMAGES) was used here to simulate ten years of nonreactive film growth upon impervious indoor surfaces within a Monte Carlo procedure representing a sub-set of North American residential buildings. Film composition was resolved into categories reflecting indoor aerosol (gas + particle phases) factors from three sources: outdoor-originating, indoor-emitted, and indoor-generated secondary organic material. In addition to gas-to-film partitioning, particle deposition was modeled as a vector for organics to enter films, and it was responsible for a majority of the film mass after ∼1000 days of growth for the median simulation and is likely the main source of LVOCs within films. Therefore, the organic aerosol factor possessing the most SVOCs contributes most strongly to the composition of early films, but as the film ages, films become more dominated by the factor with the highest particle concentration. Indoor-emitted organics (e.g. from cooking) often constituted at least a plurality of the simulated mass in developed films, but indoor environments are diverse enough that any major organic material source could be the majority contributor to film mass, depending on building characteristics and indoor activities. A sensitivity analysis suggests that rapid film growth is most likely in both newer, more air-tight homes and older homes near primary pollution sources.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Monitoreo del Ambiente , Vivienda , Aerosoles/análisis
2.
Environ Sci Process Impacts ; 25(10): 1732, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37791473

RESUMEN

Correction for 'Iodine emission from the reactive uptake of ozone to simulated seawater' by Stephanie R. Schneider et al., Environ. Sci.: Processes Impacts, 2023, 25, 254-263, https://doi.org/10.1039/D2EM00111J.

3.
Environ Health Perspect ; 131(10): 107012, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37878796

RESUMEN

BACKGROUND: Although many studies have linked prenatal exposure to PM2.5 to adverse birth outcomes, little is known about the effects of exposure to specific constituents of PM2.5 or mechanisms that contribute to these outcomes. OBJECTIVES: Our objective was to investigate effects of oxidative potential and PM2.5 metal components from non-exhaust traffic emissions, such as brake and tire wear, on the risk of preterm birth (PTB) and term low birth weight (TLBW). METHODS: For a birth cohort of 285,614 singletons born in Los Angeles County, California, in the period 2017-2019, we estimated speciated PM2.5 exposures modeled from land use regression with cokriging, including brake and tire wear related metals (barium and zinc), black carbon, and three markers of oxidative potential (OP), including modeled reactive oxygen species based on measured iron and copper (ROS), OH formation (OPOH), and dithiothreitol (DTT) loss (OPDTT). Using logistic regression, we estimated odds ratios (OR) and 95% confidence intervals (CI) for PTB and TLBW with speciated PM2.5 exposures and PM2.5 mass as continuous variables scaled by their interquartile range (IQR). RESULTS: For both metals and oxidative potential metrics, we estimated increased risks for PTB (ORs ranging from 1.01 to 1.03) and TLBW (ORs ranging from 1.02 to 1.05) per IQR exposure increment that were robust to adjustment for PM2.5 mass. Associations for PM2.5 mass, black carbon, metal components, and oxidative potential (especially ROS and OPOH) with adverse birth outcomes were stronger in Hispanic, Black, and mixed-race or Native American women. DISCUSSION: Our results indicate that exposure to PM2.5 metals from brake and tire wear and particle components that contribute to oxidative potential were associated with an increased risk of PTB and TLBW in Los Angeles County, particularly among Hispanic, Black, and mixed-race or Native American women. Thus, reduction of PM2.5 mass only may not be sufficient to protect the most vulnerable pregnant women and children from adverse effects due to traffic source exposures. https://doi.org/10.1289/EHP12196.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Nacimiento Prematuro , Niño , Recién Nacido , Femenino , Humanos , Embarazo , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Los Angeles/epidemiología , Especies Reactivas de Oxígeno , Nacimiento Prematuro/epidemiología , Nacimiento Prematuro/inducido químicamente , Metales , Carbono , Estrés Oxidativo , Contaminación del Aire/análisis
4.
Environ Epidemiol ; 7(4): e257, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37545813

RESUMEN

Health effects of oxidant gases may be enhanced by components of particulate air pollution that contribute to oxidative stress. Our aim was to examine if within-city spatial variations in the oxidative potential of outdoor fine particulate air pollution (PM2.5) modify relationships between oxidant gases and cardiovascular mortality. Methods: We conducted a retrospective cohort study of participants in the Canadian Census Health and Environment Cohort who lived in Toronto or Montreal, Canada, from 2002 to 2015. Cox proportional hazards models were used to estimate associations between outdoor concentrations of oxidant gases (Ox, a redox-weighted average of nitrogen dioxide and ozone) and cardiovascular deaths. Analyses were performed across strata of two measures of PM2.5 oxidative potential and reactive oxygen species concentrations (ROS) adjusting for relevant confounding factors. Results: PM2.5 mass concentration showed little within-city variability, but PM2.5 oxidative potential and ROS were more variable. Spatial variations in outdoor Ox were associated with an increased risk of cardiovascular mortality [HR per 5 ppb = 1.028, 95% confidence interval (CI): 1.001, 1.055]. The effect of Ox on cardiovascular mortality was stronger above the median of each measure of PM2.5 oxidative potential and ROS (e.g., above the median of glutathione-based oxidative potential: HR = 1.045, 95% CI: 1.009, 1.081; below median: HR = 1.000, 95% CI: 0.960, 1.043). Conclusion: Within-city spatial variations in PM2.5 oxidative potential may modify long-term cardiovascular health impacts of Ox. Regions with elevated Ox and PM2.5 oxidative potential may be priority areas for interventions to decrease the population health impacts of outdoor air pollution.

5.
Environ Sci Process Impacts ; 25(9): 1464-1478, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37560969

RESUMEN

Indoor surfaces can act as reservoirs and reaction media influencing the concentrations and type of species that people are exposed to indoors. Mass accommodation and partitioning are impacted by the phase state and viscosity of indoor surface films. We developed the kinetic multi-layer model KM-FILM to simulate organic film formation and growth, but it is computationally expensive to couple such comprehensive models with indoor air box models. Recently, a novel effective mass accommodation coefficient (αeff) was introduced for efficient and effective treatments of gas-particle partitioning. In this study, we extended this approach to a film geometry with αeff as a function of penetration depth into the film, partitioning coefficient, bulk diffusivity, and condensed-phase reaction rate constant. Comparisons between KM-FILM and the αeff method show excellent agreement under most conditions, but with deviations before the establishment of quasi-equilibrium within the penetration depth. We found that the deposition velocity of species and overall film growth are impacted by bulk diffusivity in highly viscous films (Db ∼<10-15 cm2 s-1). Reactions that lead to non-volatile products can increase film thicknesses significantly, with the extent of film growth being dependent on the gas-phase concentration, rate coefficient, partitioning coefficient and diffusivity. Amorphous semisolid films with Db > ∼10-17-10-19 cm2 s-1 can be efficient SVOC reservoirs for compounds with higher partitioning coefficients as they can be released back to the gas phase over extended periods of time, while glassy solid films would not be able to act as reservoirs as gas-film partitioning is impeded.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Compuestos Orgánicos Volátiles , Humanos , Viscosidad , Compuestos Orgánicos Volátiles/análisis , Contaminación del Aire Interior/análisis , Cinética , Contaminantes Atmosféricos/análisis
6.
J Phys Chem A ; 127(24): 5209-5221, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37285129

RESUMEN

The photochemical aging of biomass-burning organic aerosols (BBOAs) by exposure to sunlight changes the chemical composition over its atmospheric lifetime, affecting the toxicological and climate-relevant properties of BBOA particles. This study used electron paramagnetic resonance (EPR) spectroscopy with a spin-trapping agent, 5-tert-butoxycarbonyl-5-methyl-1-pyrroline-N-oxide (BMPO), high-resolution mass spectrometry, and kinetic modeling to study the photosensitized formation of reactive oxygen species (ROS) and free radicals in mixtures of benzoquinone and levoglucosan, known BBOA tracer molecules. EPR analysis of irradiated benzoquinone solutions showed dominant formation of hydroxyl radicals (•OH), which are known products of reaction of triplet-state benzoquinone with water, also yielding semiquinone radicals. In addition, hydrogen radicals (H•) were also observed, which were not detected in previous studies. They were most likely generated by photochemical decomposition of semiquinone radicals. The irradiation of mixtures of benzoquinone and levoglucosan led to substantial formation of carbon- and oxygen-centered organic radicals, which became prominent in mixtures with a higher fraction of levoglucosan. High-resolution mass spectrometry permitted direct observation of BMPO-radical adducts and demonstrated the formation of •OH, semiquinone radicals, and organic radicals derived from oxidation of benzoquinone and levoglucosan. Mass spectrometry also detected superoxide radical adducts (BMPO-OOH) that did not appear in the EPR spectra. Kinetic modeling of the processes in the irradiated mixtures successfully reproduced the time evolution of the observed formation of the BMPO adducts of •OH and H• observed with EPR. The model was then applied to describe photochemical processes that would occur in mixtures of benzoquinone and levoglucosan in the absence of BMPO, predicting the generation of HO2• due to the reaction of H• with dissolved oxygen. These results imply that photoirradiation of aerosols containing photosensitizers induces ROS formation and secondary radical chemistry to drive photochemical aging of BBOA in the atmosphere.

7.
Environ Sci Process Impacts ; 25(2): 254-263, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35838601

RESUMEN

The heterogeneous reaction of ozone and iodide is both an important source of atmospheric iodine and dry deposition pathway of ozone in marine environments. While the iodine generated from this reaction is primarily in the form of HOI and I2, there is also evidence of volatile organoiodide compound emissions in the presence of organics without biological activity occuring [M. Martino, G. P. Mills, J. Woeltjen and P. S. Liss, A new source of volatile organoiodine compounds in surface seawater, Geophys. Res. Lett., 2009, 36, L01609, L. Tinel, T. J. Adams, L. D. J. Hollis, A. J. M. Bridger, R. J. Chance, M. W. Ward, S. M. Ball and L. J. Carpenter, Influence of the Sea Surface Microlayer on Oceanic Iodine Emissions, Environ. Sci. Technol., 2020, 54, 13228-13237]. In this study, we evaluate our fundamental understanding of the ozonolysis of iodide which leads to gas-phase iodine emissions. To do this, we compare experimental measurements of ozone-driven gas-phase I2 formation in a flow tube to predictions made with the kinetic multilayer model for surface and bulk chemistry (KM-SUB). The KM-SUB model uses literature rate coefficients used in current atmospheric chemistry models to predict I2(g) formation in pH-buffered solutions of marine composition containing chloride, bromide, and iodide compared to solutions containing only iodide. Experimentally, I2(g) formation was found to be suppressed in solutions containing seawater levels of chloride compared to solutions containing only iodide, but the model does not predict this effect using literature rate constants. However, the model is able to predict this trend upon adjustment of two specific reaction rate constants. To more closely represent true oceanic conditions, we add an organic component to the proxy seawater solutions using material generated from Thalassiosira pseudonana phytoplankton cultures. Whereas the rate of ozone deposition is unaffected, the formation rate of I2(g) is strongly suppressed in the presence of biological organic material, indicative of a sink or reduction of reactive iodine formed during the oxidation process.


Asunto(s)
Yodo , Ozono , Yoduros/química , Ozono/química , Cloruros , Agua de Mar/química
8.
Environ Sci Technol ; 56(23): 17029-17038, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36394988

RESUMEN

Oxidative stress mediated by reactive oxygen species (ROS) is a key process for adverse aerosol health effects. Secondary organic aerosols (SOA) account for a major fraction of fine particulate matter, and their inhalation and deposition into the respiratory tract causes the formation of ROS by chemical and cellular processes, but their relative contributions are hardly quantified and their link to oxidative stress remains uncertain. Here, we quantified cellular and chemical superoxide generation by 9,10-phenanthrenequinone (PQN) and isoprene SOA using a chemiluminescence assay combined with electron paramagnetic resonance spectroscopy as well as kinetic modeling. We also applied cellular imaging techniques to study the cellular mechanism of superoxide release and oxidative damage on cell membranes. We show that PQN and isoprene SOA activate NADPH oxidase in macrophages to release massive amounts of superoxide, overwhelming the superoxide formation by aqueous chemical reactions in the epithelial lining fluid. The activation dose for PQN is 2 orders of magnitude lower than that of isoprene SOA, suggesting that quinones are more toxic. While higher exposures trigger cellular antioxidant response elements, the released ROS induce oxidative damage to the cell membrane through lipid peroxidation. Such mechanistic and quantitative understandings provide a basis for further elucidation of adverse health effects and oxidative stress by fine particulate matter.


Asunto(s)
Contaminantes Atmosféricos , Superóxidos , Especies Reactivas de Oxígeno/metabolismo , Quinonas , NADPH Oxidasas/metabolismo , NADPH Oxidasas/farmacología , Contaminantes Atmosféricos/análisis , Aerosoles , Material Particulado/toxicidad , Material Particulado/análisis , Estrés Oxidativo , Macrófagos
9.
Environ Sci Process Impacts ; 24(12): 2310-2323, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36314460

RESUMEN

Reactive oxygen species (ROS) are among the species thought to be responsible for the adverse health effects of particulate matter (PM) inhalation. Field studies suggest that indoor sources of ROS contribute to measured ROS on PM in indoor air. We hypothesize that ozone reacts on indoor surfaces to form semi-volatile ROS, in particular organic peroxides (OPX), which partition to airborne particles. To test this hypothesis, we modeled ozone-induced formation of OPX, its decay and its partitioning to PM in a residential building and compared the results to field measurements. Simulations indicate that, while ROS of outdoor origin is the primary contributor to indoor ROS (in PM), a substantial fraction of ROS present in indoor PM is from ozone-surface chemistry. At an air change rate equal to 1/h, and an outdoor ozone mixing ratio of 35 ppb, 25% of the ROS concentration in air is due to indoor formation and partitioning of OPX to PM. For the same conditions, but with a modest indoor source of PM (1.5 mg h-1), 44% of indoor ROS on PM is of indoor origin. An indoor source of ozone, such as an electrostatic air cleaner, also increases OPX present in indoor PM. The results of the simulations support the hypothesis that ozone-induced formation of OPX on indoor surfaces, and subsequent partitioning to aerosols, is sufficient to explain field observations. Therefore, indoor sourced ROS could contribute meaningfully to total inhaled PM-ROS.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Ozono , Especies Reactivas de Oxígeno/análisis , Contaminación del Aire Interior/análisis , Aerosoles , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Tamaño de la Partícula , Monitoreo del Ambiente/métodos
10.
Science ; 377(6610): 1071-1077, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36048928

RESUMEN

Hydroxyl (OH) radicals are highly reactive species that can oxidize most pollutant gases. In this study, high concentrations of OH radicals were found when people were exposed to ozone in a climate-controlled chamber. OH concentrations calculated by two methods using measurements of total OH reactivity, speciated alkenes, and oxidation products were consistent with those obtained from a chemically explicit model. Key to establishing this human-induced oxidation field is 6-methyl-5-hepten-2-one (6-MHO), which forms when ozone reacts with the skin-oil squalene and subsequently generates OH efficiently through gas-phase reaction with ozone. A dynamic model was used to show the spatial extent of the human-generated OH oxidation field and its dependency on ozone influx through ventilation. This finding has implications for the oxidation, lifetime, and perception of chemicals indoors and, ultimately, human health.


Asunto(s)
Contaminantes Atmosféricos , Exposición a Riesgos Ambientales , Radical Hidroxilo , Ozono , Aire Acondicionado , Contaminantes Atmosféricos/efectos adversos , Alquenos , Humanos , Radical Hidroxilo/análisis , Radical Hidroxilo/metabolismo , Oxidación-Reducción , Ozono/efectos adversos , Ventilación
11.
Sci Adv ; 8(39): eabq6830, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36170374

RESUMEN

The reactions of sulfur dioxide (SO2) with surface-bound compounds on atmospheric aerosols lead to the formation of organic sulfur (OS) compounds, thereby affecting the air quality and climate. Here, we show that the heterogeneous reaction of SO2 with authentic urban grime under near-ultraviolet sunlight irradiation leads to a large suite of various organic compounds including OS released in the gas phase. Calculations indicate that at the core area of Guangzhou, building surface uptake of SO2 is 15 times larger than uptake of SO2 on aerosol surfaces, yielding ~20 ng m-3 of OS that represents an important fraction of the observed OS compounds (60 to 200 ng m-3) in ambient aerosols of Chinese megacities. This chemical pathway occurring during daytime can contribute to the observed fraction of OS compounds in aerosols and improve the understanding of haze formation and urban air pollution.

12.
Environ Sci Process Impacts ; 24(10): 1725-1734, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-35938535

RESUMEN

This paper investigates the effects of ionizers on the ozone concentration within vehicle cabins by using a series of measurements combined with a kinetic box model. Testing consisted of measuring ozone concentration during static tests where the ventilation of the test vehicle was turned on and off depending on the test. This testing was repeated for three different portable ionizers and two vehicles with built-in ionizers. Ionizer A produced ozone at a rate of ∼0.04 ppb s-1 (∼0.68 mg h-1), which increased the in-cabin O3 concentrations of a Mitsubishi Mirage to ∼10 ppb with the fan off and ∼6 ppb in the recirculation mode. In the fresh air mode, in-cabin O3 concentrations were dominated by outdoor-to-indoor transport. Ionizer B and C produced O3 at a rate of less than 0.008 ppb s-1 (<0.14 mg h-1); however, during retesting, ionizer C was shown to emit large amounts of ozone for short amounts of time while being tested up close. The same testing was completed on vehicles with built-in ionizers; these produced <0.01 ppb s-1 (<0.32 mg h-1 in the Buick Enclave and <0.25 mg h-1 in the Hyundai Genesis), and in-cabin O3 concentrations were again dominated by outdoor-to-indoor transport with fresh air ventilation. While ionizers are currently regulated, the negative impact they have on in cabin air quality is important to continue monitoring.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminación del Aire , Ozono , Ozono/análisis , Ventilación , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis
13.
J Phys Chem A ; 126(32): 5398-5406, 2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-35925795

RESUMEN

Emerging contaminants are of concern due to their rapidly increasing numbers and potential ecological and human health effects. In this study, the synergistic effects of the presence of multifunctional nitro, amino and carbon-carbon double bond (C═C) groups on the gas phase ozonolysis in O2 or at the air/solid interface were investigated using five simple model compounds. The gas phase ozonolysis rate constants at 296 K were (3.5 ± 0.9) × 10-20 cm3 molecule-1 s-1 for 2-methyl-1-nitroprop-1-ene and (6.8 ± 0.8) × 10-19 cm3 molecule-1 s-1 for 4-methyl-4-nitro-1-pentene, with lifetimes of 134 and 7 days in the presence of 100 ppb ozone in the atmosphere, respectively. The rate constants for gas phase E-N,N-dimethyl-1-propenylamine and N,N-dimethylallylamine reactions with ozone were too fast (>10-18 cm3 molecule-1 s-1) to be measured, implying lifetimes of less than 5 days. A multiphase kinetics model (KM-GAP) was used to probe the gas-solid kinetics of 1-dimethylamino-2-nitroethylene, yielding a rate constant for the surface reaction of 1.8 × 10-9 cm2 molecule-1 s-1 and in the bulk 1× 10-16 cm3 molecule-1 s-1. These results show that a nitro group attached to the C═C lowers the gas phase rate constant by 2-3 orders of magnitude compared to the simple alkenes, while amino groups have the opposite effect. The presence of both groups provides counterbalancing effects. Products with deleterious health effects including dimethylformamide and formaldehyde were identified by FTIR. The identified products differentiate whether the initial site of ozone attack is C═C and/or the amino group. This study provides a basis for predicting the environmental fates of emerging contaminants and shows that both the toxicity of both the parent compounds and the products should be taken into account in assessing their environmental impacts.


Asunto(s)
Alquenos , Ozono , Alquenos/química , Carbono , Humanos , Cinética , Nitrógeno , Ozono/química
14.
Environ Sci Technol ; 56(12): 7716-7728, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35671499

RESUMEN

Commonly found in atmospheric aerosols, cooking oils, and human sebum, unsaturated lipids rapidly decay upon exposure to ozone, following the Criegee mechanism. Here, the gas-surface ozonolysis of three oleic acid-based compounds was studied in a reactor and indoors. Under dry conditions, quantitative product analyses by 1H NMR indicate up to 79% molar yield of stable secondary ozonides (SOZs) in oxidized triolein and methyl oleate coatings. Elevated relative humidity (RH) significantly suppresses the SOZ yields, enhancing the formation of condensed-phase aldehydes and volatile C9 products. Along with kinetic parameters informed by molecular dynamics simulations, these results were used as constraints in a kinetic multilayer model (KM-GAP) simulating triolein ozonolysis. Covering a wide range of coating thicknesses and ozone levels, the model predicts a much faster decay near the gas-lipid interface compared to the bulk. Although the dependence of RH on SOZ yields is well predicted, the model overestimates the production of H2O2 and aldehydes. With negligible dependence on RH, the product composition for oxidized oleic acid is substantially affected by a competitive reaction between Criegee intermediates (CIs) and carboxylic acids. The resulting α-acyloxyalkyl hydroperoxides (α-AAHPs) have much higher molar yields (29-38%) than SOZs (12-16%). Overall, the ozone-lipid chemistry could affect the indoor environment through "crust" accumulation on surfaces and volatile organic compound (VOC) emission. In the atmosphere, the peroxide formation and changes in particle hygroscopicity may have effects on climate. The related health impacts are also discussed.


Asunto(s)
Ácido Oléico , Ozono , Aldehídos , Humanos , Peróxido de Hidrógeno , Ácido Oléico/química , Ozono/química , Trioleína
15.
Environ Sci Technol ; 56(11): 7256-7265, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34965092

RESUMEN

There is growing interest to move beyond fine particle mass concentrations (PM2.5) when evaluating the population health impacts of outdoor air pollution. However, few exposure models are currently available to support such analyses. In this study, we conducted large-scale monitoring campaigns across Montreal and Toronto, Canada during summer 2018 and winter 2019 and developed models to predict spatial variations in (1) the ability of PM2.5 to generate reactive oxygen species in the lung fluid (ROS), (2) PM2.5 oxidative potential based on the depletion of ascorbate (OPAA) and glutathione (OPGSH) in a cell-free assay, and (3) anhysteretic magnetic remanence (XARM) as an indicator of magnetite nanoparticles. We also examined how exposure to PM oxidative capacity metrics (ROS/OP) varied by socioeconomic status within each city. In Montreal, areas with higher material deprivation, indicating lower area-level average household income and employment, were exposed to PM2.5 characterized by higher ROS and OP. This relationship was not observed in Toronto. The developed models will be used in epidemiologic studies to assess the health effects of exposure to PM2.5 and iron-rich magnetic nanoparticles in Toronto and Montreal.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Nanopartículas de Magnetita , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente , Estrés Oxidativo , Material Particulado/análisis , Especies Reactivas de Oxígeno
16.
Environ Sci Technol ; 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34596401

RESUMEN

Respiratory deposition of secondary organic aerosols (SOA) and iron may lead to the generation of reactive oxygen species and free radicals in lung fluid to cause oxidative stress, but their underlying mechanism and formation kinetics are not well understood. Here we demonstrate substantial formation of organic radicals in surrogate lung fluid (SLF) by mixtures of Fe2+ and SOA generated from photooxidation of isoprene, α-terpineol, and toluene. The molar yields of organic radicals by SOA are measured to be 0.03-0.5% in SLF, which are 5-10 times higher than in water. We observe that Fe2+ enhances organic radical yields dramatically by a factor of 20-80, which can be attributed to Fe2+-facilitated decomposition of organic peroxides, in consistency with a positive correlation between peroxide contents and organic radical yields. Ascorbate mediates redox cycling of iron ions to sustain organic peroxide decomposition, as supported by kinetic modeling reproducing time- and concentration-dependence of organic radical formation as well as additional experiments observing the formation of Fe2+ and ascorbate radicals in mixtures of ascorbate and Fe3+. •OH and superoxide are found to be scavenged by antioxidants efficiently. These findings have implications on the role of organic radicals in oxidative damage and lipid peroxidation.

17.
Environ Sci Technol ; 55(20): 14069-14079, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34609853

RESUMEN

Air pollution is a major risk factor for human health. Chemical reactions in the epithelial lining fluid (ELF) of the human respiratory tract result in the formation of reactive oxygen species (ROS), which can lead to oxidative stress and adverse health effects. We use kinetic modeling to quantify the effects of fine particulate matter (PM2.5), ozone (O3), and nitrogen dioxide (NO2) on ROS formation, interconversion, and reactivity, and discuss different chemical metrics for oxidative stress, such as cumulative production of ROS and hydrogen peroxide (H2O2) to hydroxyl radical (OH) conversion. All three air pollutants produce ROS that accumulate in the ELF as H2O2, which serves as reservoir for radical species. At low PM2.5 concentrations (<10 µg m-3), we find that less than 4% of all produced H2O2 is converted into highly reactive OH, while the rest is intercepted by antioxidants and enzymes that serve as ROS buffering agents. At elevated PM2.5 concentrations (>10 µg m-3), however, Fenton chemistry overwhelms the ROS buffering effect and leads to a tipping point in H2O2 fate, causing a strong nonlinear increase in OH production. This shift in ROS chemistry and the enhanced OH production provide a tentative mechanistic explanation for how the inhalation of PM2.5 induces oxidative stress and adverse health effects.


Asunto(s)
Contaminantes Atmosféricos , Humanos , Peróxido de Hidrógeno , Radical Hidroxilo , Material Particulado , Especies Reactivas de Oxígeno
18.
Indoor Air ; 31(6): 2070-2083, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33991124

RESUMEN

Large surface area-to-volume ratios indoors cause heterogeneous interactions to be especially important. Semi-volatile organic compounds can deposit on impermeable indoor surfaces forming thin organic films. We developed a new model to simulate the initial film formation by treating gas-phase diffusion and turbulence through a surface boundary layer and multi-layer reversible adsorption on rough surfaces, as well as subsequent film growth by resolving bulk diffusion and chemical reactions in a film. The model was applied with consistent parameters to reproduce twenty-one sets of film formation measurements due to multi-layer adsorption of multiple phthalates onto different indoor-relevant surfaces, showing that the films should initially be patchy with the formation of pyramid-like structures on the surface. Sensitivity tests showed that highly turbulent conditions can lead to the film growing by more than a factor of two compared to low turbulence conditions. If surface films adopt an ultra-viscous state with bulk diffusion coefficients of less than 10-18  cm2 s-1 , a significant decrease in film growth is expected. The presence of chemical reactions in the film has the potential to increase the rate of film growth by nearly a factor of two.


Asunto(s)
Contaminación del Aire Interior , Compuestos Orgánicos Volátiles , Adsorción , Difusión , Cinética , Compuestos Orgánicos Volátiles/análisis
19.
Am J Respir Crit Care Med ; 204(2): 168-177, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33798018

RESUMEN

Rationale: Evidence linking outdoor air pollution with coronavirus disease (COVID-19) incidence and mortality is largely based on ecological comparisons between regions that may differ in factors such as access to testing and control measures that may not be independent of air pollution concentrations. Moreover, studies have yet to focus on key mechanisms of air pollution toxicity such as oxidative stress. Objectives: To conduct a within-city analysis of spatial variations in COVID-19 incidence and the estimated generation of reactive oxygen species (ROS) in lung lining fluid attributable to fine particulate matter (particulate matter with an aerodynamic diameter ⩽2.5 µm [PM2.5]). Methods: Sporadic and outbreak-related COVID-19 case counts, testing data, population data, and sociodemographic data for 140 neighborhoods were obtained from the City of Toronto. ROS estimates were based on a mathematical model of ROS generation in lung lining fluid in response to iron and copper in PM2.5. Spatial variations in long-term average ROS were predicted using a land-use regression model derived from measurements of iron and copper in PM2.5. Data were analyzed using negative binomial regression models adjusting for covariates identified using a directed acyclic graph and accounting for spatial autocorrelation. Measurements and Main Results: A significant positive association was observed between neighborhood-level ROS and COVID-19 incidence (incidence rate ratio = 1.07; 95% confidence interval, 1.01-1.15 per interquartile range ROS). Effect modification by neighborhood-level measures of racialized group membership and socioeconomic status was also identified. Conclusions: Examination of neighborhood characteristics associated with COVID-19 incidence can identify inequalities and generate hypotheses for future studies.


Asunto(s)
Contaminación del Aire/análisis , COVID-19/metabolismo , Modelos Estadísticos , Especies Reactivas de Oxígeno/análisis , COVID-19/epidemiología , Femenino , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Ontario/epidemiología , SARS-CoV-2
20.
Environ Sci Process Impacts ; 23(2): 302-310, 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33448269

RESUMEN

Drivers and passengers are exposed to high concentrations of air pollutants while driving. While there are many studies to assess exposure to air pollutants penetrating into a vehicle cabin, little is known about how individual gas pollutants are behaving (e.g. accumulating, depositing, reacting etc.) in the cabin. This study investigated the characteristic behavior of CO, NO, NO2 and O3 in a vehicle cabin in the presence of a driver with static, pseudo dynamic and dynamic tests. We found in our experiments that CO and NO concentrations increased while O3 and NO2 concentrations decreased rapidly when cabin air was recirculated. A kinetic model, which contains 20 chemical reactions, could predict the static test results well. CO and NO accumulations in the cabin were due to exhalation from the driver and conversion of NO2 to NO upon deposition to surfaces may also play a role. Pseudo dynamic and dynamic test results showed similar results. During the fresh air mode CO, NO, and NO2 followed similar trends between the inside and outside of the cabin, while in cabin O3 concentrations were lower compared to outside concentrations due to reactions with the human and surface deposition. The Cabin Air Quality Index approached 0.8 and 0.4 for O3 during pseudo dynamic and dynamic tests, respectively. Accumulation of NO in the cabin was not obvious during the dynamic test due to a large variation of outside NO concentrations. We encourage auto manufacturers to develop control algorithms and devices to reduce a passenger's exposure to gaseous pollutants in vehicle cabins.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Monóxido de Carbono/análisis , Monitoreo del Ambiente , Humanos , Óxido Nítrico , Óxidos de Nitrógeno/análisis , Ozono/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...